Introduction

Andrew Torda, wintersemester 2009 / 2010, AST, Angewandte ...

- who am I ?
- language .. English .. verhandelbar
- Zettel
 - www.bioinformatics.uni-hamburg.de/research/BM/torda/lehre.html
- + stine
- Übungen ebenfalls im web

Administration

People

- Andrew Torda 42838 7331 1. Stock / 105 schade@zbh.uni-hamburg.de sekr (Annette Schade) 7330
- Gundolf Schenk
- Marco Matthies
- Thomas Margraf
- Stefan Bienert (more in RNA)

Vorlesungen	Freittag	13:15 – 14:45
Übungen	Montag	16:30 - 18:00

Homework / Übungen

- Not too much
- enough from other courses
 Übungen
- very short report (schriftlich)
- individuelle / eigene

Textbooks

- any biochemistry book (Stryer, Biochemistry as per chem dept)
 - expensive, not used too much
- Leach, Andrew, "Molecular Modelling" very good for future semesters
- Folien should be sufficient

Exams

- any facts that are mentioned in these lectures and Übungen
- schriftliche Klausur

Protein Structure - the problem - sociological

- Easy ? boring ?
- Essential
- How many people have done biology ? chemistry ?
- Mein Vorschlag
 - Ich nutze die Übungszeit für Strukturgrundlagen
 - Donnerstag morgens

okt 26	basic proteins 1	people who have
nov 2	basic proteins 2	not done protein structure
nov 9	Jukes-Cantor model derivation	everybody

- 1, 23. Okt. 09 Models
- 2, 30. Okt. 09 Similarity protein sequences
- 3, 6. Nov. 09 Cluster Analysis
- 4, 13. Nov. 09 Secondary structure prediction
- 5, 20. Nov. 09 Secondary structure prediction
- 6, 27. Nov. 09 Protein domains
- 7, 4. Dez. 09 Protein domains
- 8, 11. Dez. 09 Protein function prediction
- 9, 18. Dez. 09 Protein function prediction
- 10, 8. Jan. 10 Protein function prediction
- 11, 15. Jan. 10 Sequence design
- 12, 22. Jan. 10 Sequence design
- 13, 29. Jan. 10 Fold recognition
- 14, 5. Feb. 10 Fold recognition

Broad themes

Theme of Semester

- given some information about a macromolecule (protein)
 - what can be calculated ? predicted ?
 - how much would you trust predictions ?
 - limitation, applicability, reliability
- typical information
 - a protein sequence (lots known)
 - a protein structure (less known)
 - a DNA sequence (think of genomes)

Specific and general models

Dream

- Feed data to box and have it interpreted
 - given my protein, what is the structure ?
 - given my spectrum where is the centre of the peak ?

Model types

- Specific
 - you know the structure of your data, fit points to the observations
- General
 - look for some patterns in data little understanding of the underlying theory
- examples

Interpreting spectroscopic data

- just an example (no spectroscopy in this course)
- many kinds of peaks in spectroscopy look like

- my mission
- find centre (\approx 24) and height (\approx 0.08)
- but they have noise

noisy data

- 0.12 real world has noise 0.1 real peak 0.08 • we still want centre, height with noise amplitude 0.06 0.04 0.02 0 try simple smoothing 50 100 0 no assumptions about data frequency (Hz) 0.12 0.1 smoothed data 0.08 claim amplitude 0.06 centre around 23 0.04 0.02 looks believable \bullet 0 50 100 0
 - frequency (Hz)

• I expect peaks like

- A fit of a calculated peak...
 - something is clearly wrong _{amplitude}

 a^2

 $\overline{(a^2 + x^2)}$

• if peak has a certain width it 0. must have an appropriate height

• What looked good is not the correct form

More appropriate fitting

what if we used two peaks ?
0.15 - shape of two peaks added
amplitude
0.1 - 0.05 - 0.

General vs appropriate modelling

- general smoothing method suggested one peak
 - looks good
 - appears to explain observations
 - generally applicable
- testing with correct model suggested this is wrong
- fitting with best model (two peaks)
 - near perfect
- summary
 - if you know the underlying model, use it
 - always applicable ?
 - back to biological questions

General purpose modelling

- Proteins have "secondary structure
- It appears to reflect the sequence of amino acids
 - what is the rule ?
 - 20 amino acids, N positions,
 - 20^N sequences, patterns not clear
- what to do ?
 - correct model think of all atomic interactions
 - see where atoms should be placed
 - not practical
 - or
 - forget physics
 - use dumb statistics / machine learning approaches

Mixtures of specific and general

- Will a ligand (Wirkstoff) bind to a protein ?
- with physics
 - model all atomic interactions, best physical model
 - calculate free energy (ΔG)
 - difference in solution / bound
- more generally
 - gather idea of important terms (H-bonds, overlap, ..)
 - try to find some function which often works
 - do not stick to real physics
- Will my drug dissolve in water or oil (lipid) ? (important)
- sounds like chemistry
 - usually approached by machine learning
 - number of atoms, types of atoms, ...

Similarity

- Important in all bioinformatics
 - I have a protein of unknown
 - structure / function / cell localisation
 - is it similar to one of known structure, function ...
- Similarity seems obvious
 - two sets of numbers (above)
 - two protein sequences ACDEACDE rather similar - but quantified ? ADDEAQDE
 - how many positions differ ? how long are proteins ?
 - could the similarity be by chance ?

6

set 2

Similarity

Two genomes similarity

- what are the descriptors ?
- how many genes are common ?
- is the order preserved ?
- Potential drugs
- drug 1 binds, will drug 2 ?
- how similar ?

synteny plot: http://home.cc.umanitoba.ca/~umlawda/39.769/presentation/presentation.html, Fristensky, B. ligands from, Wang, N., DeLisle, R. K. and Diller, D.J. (2005), J. Med. Chem., 48, 6980-6990

Detection and Quantification

- Models for prediction and interpretation
 - often not well justified
- Similarity in these applications
 - detection (finding / recognising)
 - quantification
- Each in the context of applications
- first protein structure ...

Summary so far

A model can explain observations, make predictions or both

A model may be based

- on a belief of the underlying chemistry / physics
- purely mathematical, probabilistic

Similarity

- we have objects with some information (proteins, ligands, genomes, sequences, ...)
- we want to find similar objects and hope they have the same properties
- similarity has a different meaning in different areas

Montag

• Übungszeit: zwei Wochen für Grundlagen-Proteinstruktur benutzt