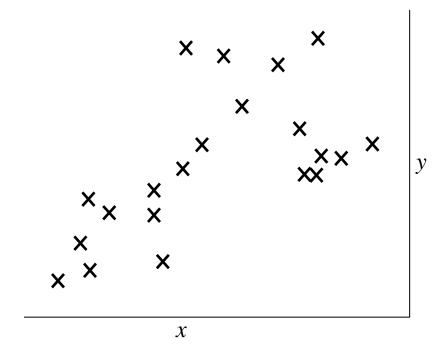
# Cluster analysis

Andrew Torda, wintersemester 2009 / 2010, AST...

- classification and prediction
- methods
  - *k*-means
  - hierarchical
    - nearest neighbour
    - divisive
- Übung

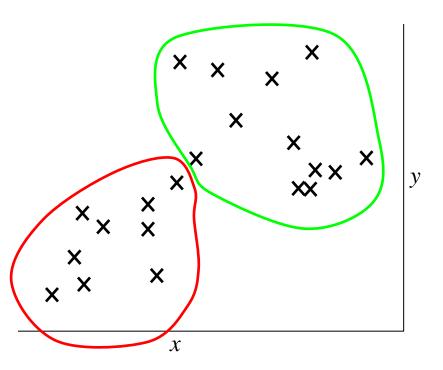
# Classification versus prediction?

Easy data two clusters

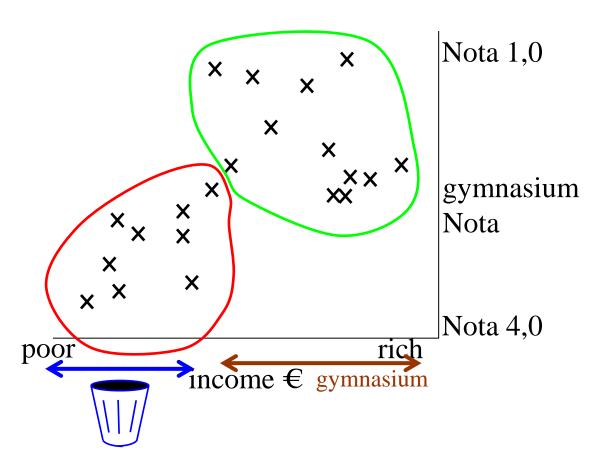


# Classification versus prediction?

- Easy data two clusters
- can this be predictive?
  - put labels on



#### Classification versus prediction?

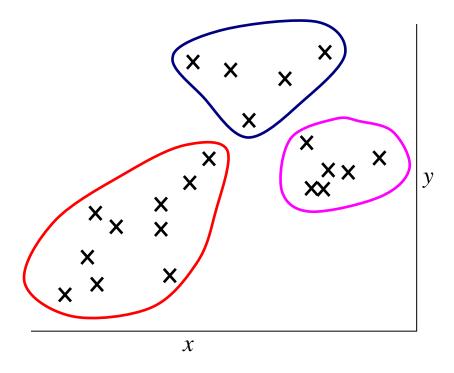


- Try a prediction based on income
- In general
  - if we know of some properties, we can guess others

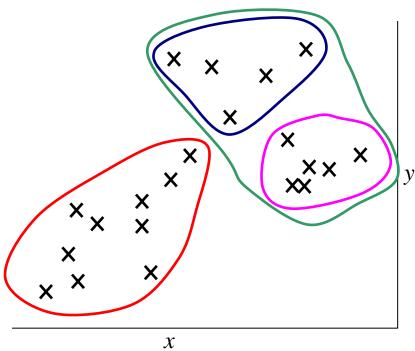
#### **Problems**

- Easy data two clusters
  - is it really?

• alternative ?



#### **Problems**



• two clusters with sub-clusters?

#### **Distance Measures (Euclidean)**

- For any two points
  - want a distance /dissimilarity



• Euclidean distance (easy in two dimensions)

$$d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$$

• in 3D 
$$d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2)^{1/2}$$

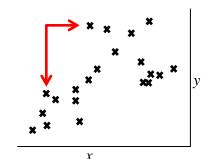
• in *n*D (nomenclature does not work)

$$d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 + \dots)^{1/2}$$

# **Distance Measures (Manhattan)**

$$d_{ij} = |x_i - x_j| + |y_i - y_j|$$

$$d_{ij} = |x_i - x_j| + |y_i - y_j| + |z_i - z_j + \dots|$$



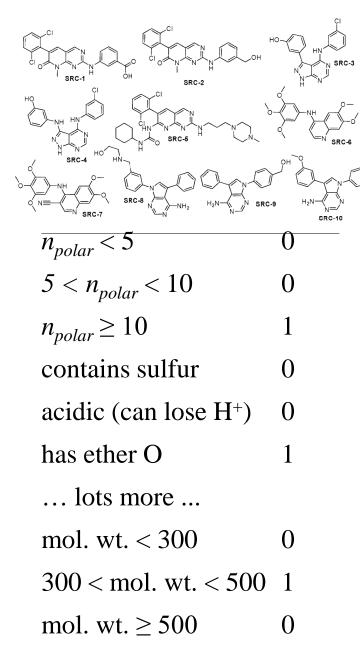
not x, y continuous descriptor

- Euclidean versus Manhattan versus ...
  - depends on belief
  - if one is lucky, results will not be too different
- Worse cases
  - category data
    - cars have

      - speeds, size, colour, 2 door/4door
- a possible Manhattan measure

# A set of discrete descriptors

- identify properties
  - make long bit-vector
- dissimilarity?
  - count matching bits
- typically  $10^2$   $10^3$  properties
- crude?
  - enough properties that mistakes do not matter
- is this a Manhattan distance?
  - probably



### General versus Specific

- When I know nothing
  - invent a distance / dissimilarity based on descriptors x, y, ...
- If I know more, use an appropriate distance
  - sequence example
    - Jukes-Cantor distance, *p*-value measure
  - protein structures, metabolic pathways, small molecules
    - (geometric differences, similar reactions, bit strings)
- Given some distances what are the methods?

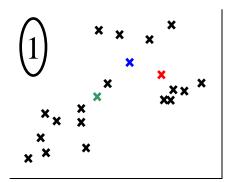
# **Clustering Methods**

- *k*-means
- hierarchical
- fuzzy (not here)

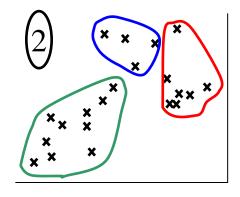
#### k-means

• Pick *k* points - call them cluster centres while (there is substantial change) assign each data-point to nearest centre re-calculate centres

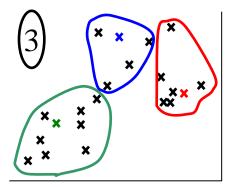
### k-means steps



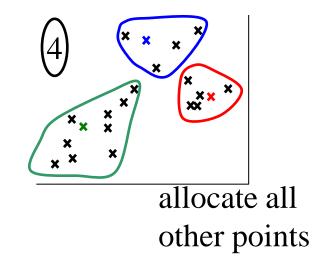
pick 3 points



allocate all other points

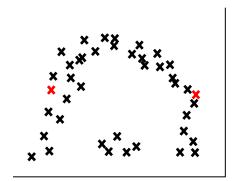


pick new centres



### k-means problems

- What is *k* ?
  - guess, experiment, preconception
- Initial choice of cluster centres
- requires concept of cluster centre (mean)
- non deterministic
- convergence
- cluster shape
  - what if red points become centres?



#### Hierarchical

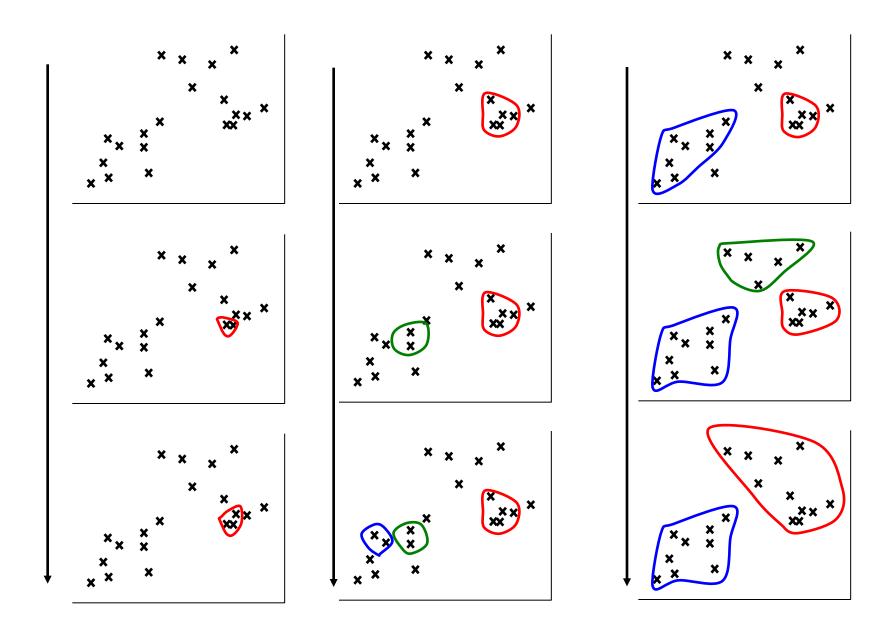
- Two flavours
  - divisive
  - agglomerative / joining / nearest neighbour

### agglomerative / joining / nearest neighbour

•For *n* observations form *n* clusters (each point is separate)

```
while (not finished)
    find two nearest clusters (details later)
    join
```

# agglomerative / joining example



#### **Divisive**

split\_into\_two (cluster)

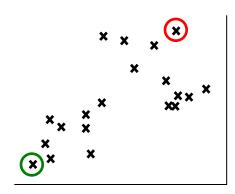
```
split_into_two (cluster)
  select two most separated points as centres of new clusters
  for each point in cluster
  allocate to nearest cluster centre
```

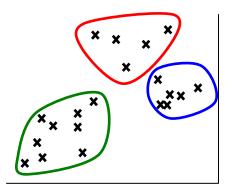
main procedure

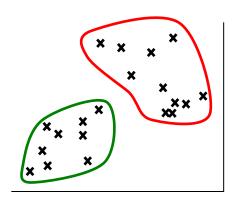
```
all points in one cluster
while (not finished)
  find largest cluster
  split_into_two (cluster)
```

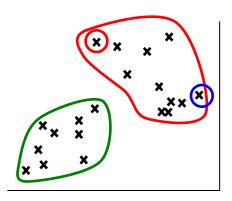
example

# Divisive example

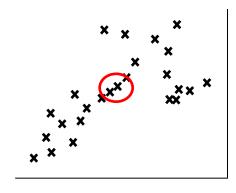


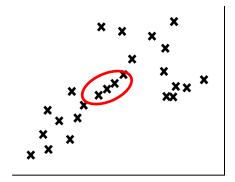






# Breaking a joining method

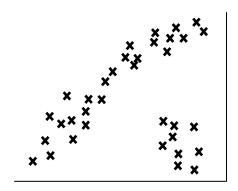




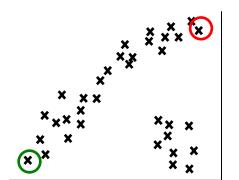


- consider this data with an agglomerative method
- distances are important, not compactness
- is this always true?

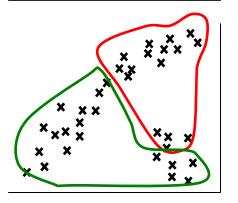
### breaking a divisive method



- method considers distances
- in this case
  - compactness of points is more important

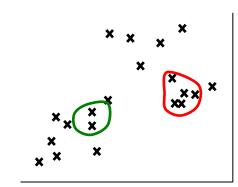


- in many problems
  - we only trust measures of high similarity
  - example
    - molecular similarity
      - very different versus very very different



#### cluster distances

- many details glossed over
  - what is cluster distance? cluster centre?
- distance between clusters?
- distance between points is clear
  - between point and cluster
  - between clusters?
- sensible choices
  - from cluster to nearest point
  - from cluster to most typical point in other cluster



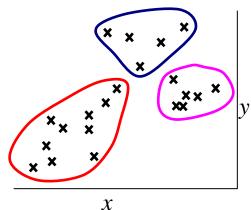
#### **UPGMA**

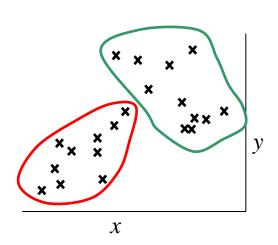
- in many bioinformatics texts
- unweighted pair group method using arithmetic averages
- take red points (5)
- take green points (2)
  - take average of all 2×5 distances
- debate over distance measures
  - similar to agglomerative versus divisive discussion
  - depends on structure of data



# How complicated is clustering?

- in practice
  - distance based methods are best when a table of distances is available  $O(n^2)$
- problem in most fundamental form
  - unknown *k*-clusters
  - combinatorial possibilities huge
- formalise our goal
  - maximise density within clusters
  - maximise distance between clusters
  - should be able to distinguish
    - 2 from 3 cluster answers

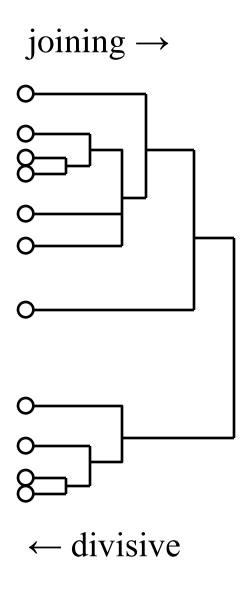




#### Are we finished?

- lots of decorations
  - iterations over cluster memberships
  - different definitions of distances, centres
- mixing x, y, z continuous descriptors and categories (red/blue/..)
- fuzzy clustering

#### **Dendrograms**



- assumption of hierarchy
- where you call the "classification" depends on where you want to cut tree
- protein shape example
  - most detailed level
    - very similar protein sequences

### **Applications - sequences**

#### Sequence comparison

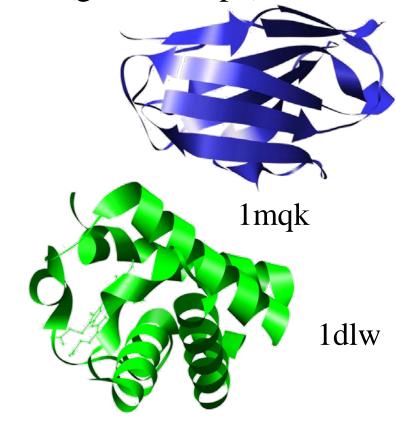
- distances?
  - evolutionary estimates or
  - similarity based on statistics (*p*-values)
  - clear model (evolution) suits hierarchy
  - related sequences
    - distances OK
  - less related sequences
    - alignments unreliable

#### **Applications - protein structure**

- 3 proteins of similar size
- 1bww and 1mqk easy (immunoglobulins human/mouse)
  - not easy to compare against 1dlw (globin shape)



|      | 1bww | 1mqk | 1dlw |
|------|------|------|------|
| 1bww | 0    | easy | ?    |
| 1mqk |      | 0    | ?    |
| 1dlw |      |      | 0    |

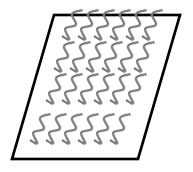


# **Applications - protein structure**

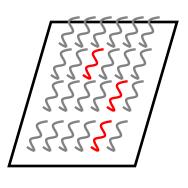
- Are we lost?
  - easiest to tackle problems with joining methods

# Applications - microarray data

- what are microarrays?
  - little slabs with pieces of DNA bound



#### microarrays



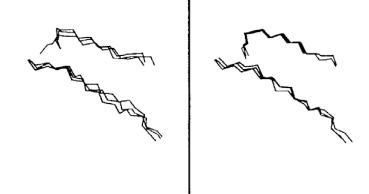
- lots of bits of DNA from known genes (complementary)
- pour on a sample from cells with mRNA
  - some binds
  - detect by fluorescence
  - have a look which bits of DNA on chip were affected - tells us which genes were involved
  - we know which genes were activated in the original soup

#### microarrays

- feed sugar to cells
  - pour on to microarray who lights up?
  - boring
- feed lipids to cells
  - who lights up
- feed ... to cells
- starve cells, heat cells, find cells with disease
- are there groups of genes whose regulation is similar?
  - should let you find genes in pathways / regulation mechanisms

# protein structure

- I simulate a protein molecule and see 10<sup>6</sup> configurations
  - is the molecule constantly changing or sometimes leaving and returning to conformations?
  - does not look like much..
     backbone atoms only
  - long molecular dynamics simulation
    - 4 major clusters selected
    - each represented by centre
      - + two outliers



### **Summary**

- Rarely is there a correct answer
- Method of choice may depend on data
- best case
  - reliable distances known between all points
- real problems
  - noise / outliers
- running time?
  - $O(n^2)$  for dissimilarity matrix
  - method dependent usually less than  $O(n^2)$