Protein Domains

Andrew Torda, wintersemester 2009 / 2010, Angewandte ...

- We would like a modular view of biology at various levels
- proteins
 - many proteins have separate chains

• what about units within one chain ?

4 domain protein

- 1cxl has 686 residues
- cleaves carbohydrate bond
 - one solid lump but...

4 domain protein

- 1. α -amylase catalytic
- 2. α-amylase C-terminal
- 3. immunoglobulin like domain
- 4. starch binding

• even clearer example

3 domain protein

- 1qcf "src tyrosine kinase"
- the domains really are common to other proteins

Earlier history

- Domains came before there were many structures
- Consider a big protein that
 - joins $ADP + P_i \rightarrow ATP$
 - performs some oxidation
 - responds to some regulator
 - take protein + protease (splits protein in a few places)
 - cleave / break protein (gently) get a few pieces (2, 3, 4..)
 - purify pieces
 - for each piece find that
 - some can bind ADP/ATP
 - some bind sugars, some regulators

Earlier history

- Appeared that for some proteins
 - different functions associated with different pieces
 - refer to as "functional domains"
- Hope / belief
 - bigger proteins are made from units, combined over evolutionary time scales

• an example...

modular protein

- diptheria toxin (1ddt) middle of picture
 - 3 domains
 - each similar to some different protein

- appears as if modules are mixed together
- should be visible at sequence level...

Sequence level domains

• Align a group of sequences

	 long protein 3 domains
	domain 1
=	 domain 2 domain 1 & 3
=	 _ domains 2 & 3 domain 3 &
	something else

- appears to have 3 or 4 domains
- no reference to structures or function

Domain definitions summary

		structure	sequence	biochemistry
1.	functional	not necessary	not necessary	yes
2.	sequence- based	not necessary	yes	no
3.	structure	yes	usually known	no

- How important ?
 - $> \frac{2}{3}$ proteins have 2 or more domains
- part of definition
 - a piece of a protein which can fold and is stable
- Now
 - methods based on structure

Finding Domains

- a definition leads to methods
 - domain is a compact unit
- objective way to look for dense units ?
 - cluster analysis
- philosophy in cluster analysis
 - look for dense groupings
- leads to dendrogram

Clustering

Approach

- need a (dis)similarity matrix between every object
- here: distance between C^{α} atoms

• does this work ?

residue	1	2	•••	N
1	0	•••	•••	•••
2		0	•••	
			•	
4				0

Clustering

- clustering applied to concanavalin A
 - bottom small compact pieces
 - higher compact units
 - looks like natural
 3 domains
- number of domains is not absolutely determined
- very very very old method

Cuts / Surface area / volume

- Simple idea cut chain in two pieces
- density of part 1 / versus part 2
- cut so as to maximise density

Problems - one cut is not enough

- A method should be able to split with 1, 2, 3, ... cuts
- For 3 cuts with N_{res} positions: $N_{res} \times N_{res} \times N_{res}$
 - really $(N_{res})^{N_{cut}}$

Problems - density

- I want to maximise density
 - density of protein ?
 - number of residues in a volume ?
 - volume ? not sphere
- Contacts are easier than density
 - within a domain there are many contacts
 - between domains few contacts
 - an approximation

Counting contacts

- Do I have many contacts compared to the number of atoms ?
 - calculate distance between each $C_i^{\alpha}C_i^{\alpha}atoms = d_{ij}$
 - if $d_{ij} < 4$ Å, set $p_{ij} = 1$ else $p_{ij} = 0$
 - for a given set of N_{res} atoms

• not accurate, but easy to calculate

Cutting / contacts

• a protein

• find close contacts

• how can one find the best place(s) to cut ?

- feed water into *s* (to *t*)
 - find the most blocked restrictive pipes
 - not one, but all that are restrictive

Cutting / contacts

- Flow problem
- Many ways to cut the flow from *s* to *t*

- of all these "*st* cuts" find the one with smallest capacity (flow)
- more interesting make the pipes different flow capacity
 - how are the residues really touching ? $C^{\alpha} C^{\alpha}$ or C^{α} -sidechain

Cutting / contacts

- Two steps
 - 1. find the maximum flow from *s* to *t*
 - 2. cut s from t at the few most filled pipes

rule

- if every path from source to sink has one full edge
 - flow is maximum

- keep trying every possible path, look to see if there is unused capacity
- we can go backwards

diagram from Sedgewick, R, Algorithms, Addison-Wesley, Reading, (1989)

- A B D F note DF is not quite full
- add some A C E F AC, EF are not full
- look at C, switch some capacity to CD (DF)

• with some numbers on the edges

- define an example system
 - flow into A
 - out of F
- capacities at each edge vary

- find a new path (possibly with backwards flow)
 - what is the smallest unused capacity on the path $2\Delta f$
 - > 0 ? send flow Δf in this path

Alternative

- also ends with flow of 12
- look why this this is definitely time to stop ...

alternative

- are there any paths with unfilled pipes ?
- start at A
 - to the left is filled
 - try $A \rightarrow C$
 - both routes out of C are filled
- more solutions ?
- definitely different ways to find solutions
 - different order of visiting paths

- path = any route from A to F
- is there any path where all edges have extra capacity ?
 - finished flow is maximum
- algorithm (not optimal)

while (flow not maximum / path found) add flow to path

- Our definition finished when
- every path from source to sink has at least one edge (pipe) which is full
- Is this efficient ?

Efficiency

- worst possible selection of path order would require 2000 iterations
- First part of procedure finished
- flow is maximum
- next
 - where to cut graph

Cutting graph

- find ways to cut network, max flow = 12
 - AB, AC capacity =14
 - BD, BE, AC capacity = 17
 - both bigger than flow (12)
 - better
 - for each path
 - find first full pipe cut
 - AB, CD, CE capacity = 12
 - = max flow
 - best cut

Cutting graph

- If the capacity across our set of cuts = maximum flow
 - it is a "minimum cut"
 - smallest connection between two parts of graph
 - graph / network / protein is broken into two parts / domains
- Useful yet ?
 - no mention of finding source *s* and sink *t*
 - details efficiency not mentioned

Network flow and proteins

- Source
 - find a surface residue
 - connect an s
 - connect to nearby surface residues
- Sink
 - find a surface residue far away, connect to t
- ad hoc ? arbitrary ? optimal ?
 - maybe not critical
- Multiple domains ?
 - while (domains not too small)
 - keep trying to split

Xu, Xu and Gabow, Bioinformatics, 16, 1091-1104, (2000), Protein decomposition using...

Background story - Ising spin model

- energy of spin *i* depends on *i*-1, *i*+1
- energy can be good | or
- or bad
- for lots of spins
 - islands of same spin
- can be generalised to 2D, 3D
- finding low energies ? Simplest method
 - try to flip a random spin
 - accept flip if energy improves
 - sometimes accept if energy goes up (probabilistic)

- Slightly better method
 - while (energy still high)
 - for each spin
 - change to be same as average of *n* neighbours

- Protein version
 - for any known structure
 - easy to make list of neighbours of each residue
 - residues close in space should be in similar domains

• label all points with a number

• make a list of neighbours for each residue

label of a residue is m_i
 while (labels changing)
 for each residue j

$$m_{av} = \frac{1}{N_{neighbour}} \sum_{i \in \text{neighbours}} m_i$$

if
$$(m_{av} > m_j)$$

 $m_j (new) = m_j (old) + 1$
else if $(m_{av} > m_j)$
 $m_j (new) = m_j (old) - 1$

- Properties of Taylor / Ising spin-inspired method
 - optimism
 - will converge and become stable
 - requires threshold what is a neighbour
 - can use sophisticated averaging distance dependent
 - may converge to 2, 3, ... domains

Methods so far

1. simple - look for single cut points and maximise density

- 2. Crippen / hierarchical clustering
- 3. Network flow
- 4. Ising spin / Taylor
- All methods have arbitrary numbers

Why are methods so complicated ?

- If we cut protein chain once
 - methods are easy use density criterion
- cut protein twice ? more ? remember

- How many domains ?
 - Crippen / clustering method whatever you want
 - Network flow repeatedly split and eventually stop
 - Taylor / Ising may converge to > 2 domains

Crippen / hierarchical clustering

• at what level of hierarchy do I cut tree ?

Network flow

- what constitutes a contact ? (any 2 atom < 4 Å ?)
- give pipes (edges) more weight for different kinds of contacts
- are solutions unique ?
 - probably in practice
- when do we stop splitting domains

Taylor / Ising spin method

- what constitutes a contact ? how many Å ?
- type of averaging to get m_{av} ?
- when does one converge ?

Elegance

- do methods work as described ? not really
- all authors report problems example
 - Taylor finds different results for α -helical and β -sheet regions
 - simple explanation ? distances within / between secondary structure are very different
 - method with multiple distance criteria = ugly

Do methods work

- with many fixes and tuning yes
 - distance criteria, thresholds

Do methods agree ?

- Only ask question if you agree to think in terms of structure
- Answer will be different in terms of evolution or sequences
- Criteria
 - how many domains inside a protein ?
 - where are the domain borders ?

Number of domains

- test set of few hundred proteins
- compare against author's estimate
- 80-90 % agreement

How many domains per protein

• Same set of 467 proteins

- authors split into several domains
- "SCOP" prefers smaller number of domains

Agreement ?

• lots of room for differences

Some statistics

- how big is a protein domain ?
- peaks near 60 and 130 residues

How complicated are domains ?

- Justification for complicated domain recognition
 - single cuts, double cuts in chains are not enough

- what percentage of domains are built from
 - 1 chain ?
 - 2 chains ? ...
- in "DALI", 23 % of domains are not continuous (multiple crosses of chain)

Evolutionary picture

- original claim
 - domains are units that move as a module in evolution

- if we see multiple cuts 10-20 % of time
 - picture is much less clear

Summary

- Domain definitions
 - functional, structural, sequence based
- Finding domains
 - relies on contacts, density
 - method must be able to handle multiple crossings of chain
- We considered
 - clustering / hierarchical
 - network flow
 - Taylor / Ising spin-inspired
- There are many many more methods
- Methods do not agree with each other
- Some trends in size and number of domains
- Real proteins are not as simple as evolutionary picture