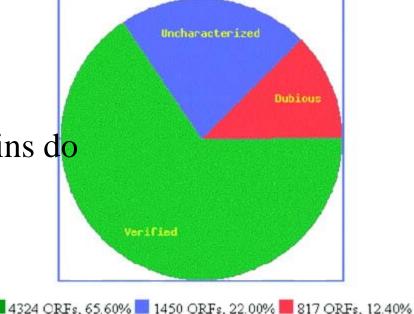
Protein Function Prediction


Andrew Torda, Wintersemester 2009 / 2010, Angewandte ...

- Protein function field of biochemists
 - can it be predicted / guessed from
 - structure ?
 - sequence ?
- Is this an issue ?
 - 5 to 10 years ago
 - a protein was of interest, because one knew its function
 - then found its sequence + structure
 - now, lots of proteins unknown

Example yeast genome

- yeast 6.6 × 10^3 proteins / ORFs
- \approx decade after sequencing
- not really known what many proteins do

- protein function may not be easy
 - extreme case prions
 - structure lots of effort (X-ray, NMR)
 - function expression, knockouts
 - function still not really clear

Example e. coli

21

10

17/12/2009 [3]

20 19

From cmr.tigr.org

• very well studied, common bacterium

• 4289 genes

Gene Role Category 11 Amino acid biosynthesis 2.63 % 2.33 % **Biosynthesis of cofactors**carriers Cell envelope 3.98 % Cellular processes 4.38 % Central intermediary metabolism 1.70 % Disrupted reading frame 0% DNA metabolism 2.40 % Energy metabolism 8.55 % Fatty acid and phospholipid metabolism 1.56 % 10 Hypothetical proteins 15.7 % Hypothetical proteins - Conserved 11 22.1 % Mobile and extrachromosomal element functions 12 1.07 % 13 Pathogen responses 0 % 14 Protein fate 2.70 % 15 Protein synthesis 2.79 % Purines, pyrimidines, nucleosides, and nucleotides 1.79 % 16 Regulatory functions 4.08 % Signal transduction 0% 19 Transcription 0.95 % 20 Transport and binding proteins 7.34 % Unclassified 15.5 % Unknown function 0.88 % 23 Viral functions 0.76 %

Plan

- How could one quantify function ?
- What might one use to predict it ?
 - sequence homology
 - structure homology
 - sequence patterns / motifs
 - structure patterns / motifs

Beliefs

- If two proteins have very similar sequence
 - structure is similar (easy to quantify / true)
 - function should be similar
- Two proteins have rather different sequences
 - structures sometimes similar (many examples)
 - function ? like to be similar
- Consequence
 - find a new protein, look for similarity
 - hope for similarity to well-characterised proteins
- other opinions and examples

Why I do not like function

• Can we quantify / define it ?

```
emb CAA55527.1 zinc finger protein [Homo sapiens]
                                                                              0.0
                                                                        723
ref XP_001160877.1 PREDICTED: zinc finger protein 227 isoform 1...
                                                                              0.0
                                                                       723
ref XP_001132303.1 PREDICTED: similar to zinc finger protein 43...
                                                                       722
                                                                              0.0
ref XP_001166123.1 | PREDICTED: zinc finger protein 607 isoform 4...
                                                                       722
                                                                              0.0
sp|Q8IYB9|ZN595_HUMAN Zinc finger protein 595 >gi|23271315|gb|AA...
                                                                       722
                                                                              0.0
ref XP_523409.2 PREDICTED: hypothetical protein [Pan troglodytes]
                                                                       722
                                                                              0.0
ref NP_082814.1 | hypothetical protein LOC73430 [Mus musculus] >g...
                                                                       722
                                                                              0.0
dbj BAA06541.1 KIAA0065 [Homo sapiens]
                                                                              0.0
                                                                       722
[...]
ref XP_574335.2 PREDICTED: similar to zinc finger protein 51 [R...
                                                                       720
                                                                              0.0
dbj|BAD92323.1| zinc finger protein 493 variant [Homo sapiens]
                                                                       720
                                                                              0.0
gb AAI12347.1 ZNF493 protein [Homo sapiens]
                                                                       719
                                                                              0.0
ref NP_008886.1 | zinc finger protein 33B [Homo sapiens] >gi | 6677...
                                                                              0.0
                                                                       719
ref XP_001114064.1 | PREDICTED: similar to zinc finger protein 59...
                                                                       719
                                                                              0.0
ref NP_116078.3 zinc finger protein 607 [Homo sapiens] >gi 4707...
                                                                       719
                                                                              0.0
dbj|BAD18693.1| unnamed protein product [Homo sapiens]
                                                                       718
                                                                              0.0
ref XP_979055.1 | PREDICTED: similar to reduced expression 2 [Mus...
                                                                              0.0
                                                                       718
sp|P18751|Z071_XENLA Oocyte zinc finger protein XLCOF7.1
                                                                       718
                                                                              0.0
ref |XP_539908.2 | PREDICTED: similar to replication initiator 1 i...
                                                                              0.0
                                                                       717
```

What is function ?

- glycogen phosphorylase in muscle acting on
 - very clear
- a protein in DNA replication which contains a phosphorylation site ?
- different methods attempt different tasks
- If we agree on a level, can it be done in a machine-friendly form?
- Oldest attempt for enzymes ...

EC Numbers

- 1956 international commission on enzymes
- 1961 first report on names
- regular updates until today
- names according to reaction catalysed
- hierarchical
 - Class 1. Oxidoreductases
 - Class 2. Transferases
 - Class 3. Hydrolases
 - Class 4. Lyases
 - Class 5. Isomerases
 - Class 6. Ligases
- some examples

EC Numbers

- Lyase example
 - "Lyases are enzymes cleaving C-C, C-O, C-N, and other bonds by elimination, leaving double bonds or rings, or conversely adding groups to double bonds"
- subclasses
 - EC 4.1 Carbon-carbon lyases
 - EC 4.1.1 Carboxy-Lyases
 - next page
 - EC 4.1.2 Aldehyde-Lyases
 - EC 4.1.3 Oxo-Acid-Lyases
 - EC 4.1.99 Other Carbon-Carbon Lyases
 - EC 4.2 Carbon-oxygen lyases
 - EC 4.3 Carbon-nitrogen lyases
 - EC 4.4 Carbon-sulfur lyases
 - EC 4.5 Carbon-halide lyases
 - EC 4.6 Phosphorus-oxygen lyases
 - EC 4.99 Other lyases

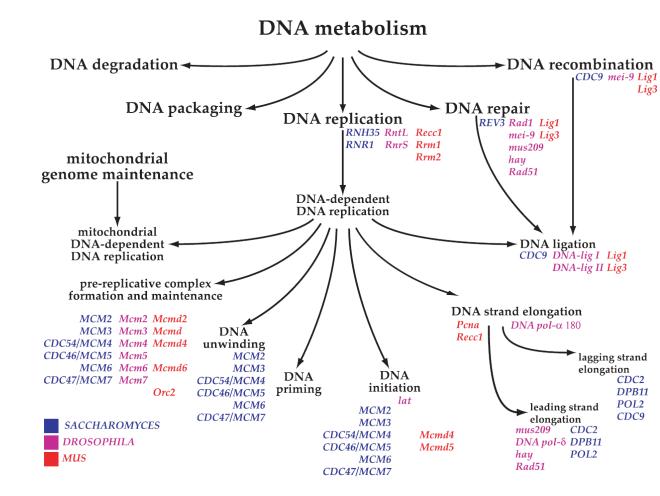
EC Numbers

- EC 4.1.1.1 pyruvate decarboxylase
- EC 4.1.1.2 oxalate decarboxylase
- EC 4.1.1.3 oxaloacetate decarboxylase
- EC 4.1.1.4 acetoacetate decarboxylase
- EC 4.1.1.5 acetolactate decarboxylase
- EC 4.1.1.6 aconitate decarboxylase
- EC 4.1.1.7 benzoylformate decarboxylase
- EC 4.1.1.8 oxalyl-CoA decarboxylase
- [.....]
- EC 4.1.1.84 D-dopachrome decarboxylase
- EC 4.1.1.85 3-dehydro-L-gulonate-6-phosphate decarboxylase
- EC 4.1.1.86 diaminobutyrate decarboxylase
- Problems
 - proteins may have more than one function
 - annotated function may not be the one *in vivo*
 - horror
 - two enzymes unrelated, no homology, no connection
 - both appear to catalyse the same reaction
 - end in same EC class
- Benefits
 - more correct than incorrect
 - almost suitable for automation and machine recognition

Gene Ontology

3 characteristics
1. biological process
2. molecular function
3. cellular component
example 1uw0

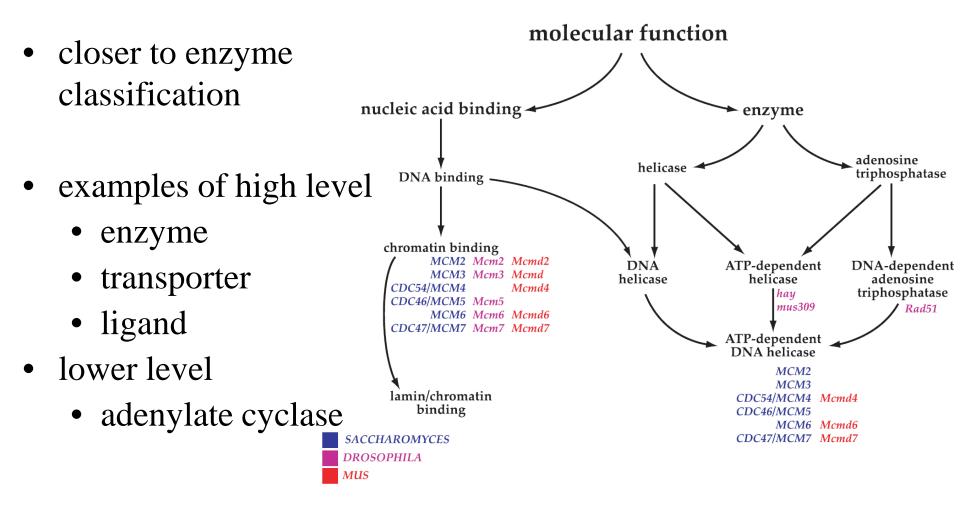
Example 1uw0 molecular function


- DNA binding
- DNA ligase (ATP) activity
- ATP binding
- zinc ion binding

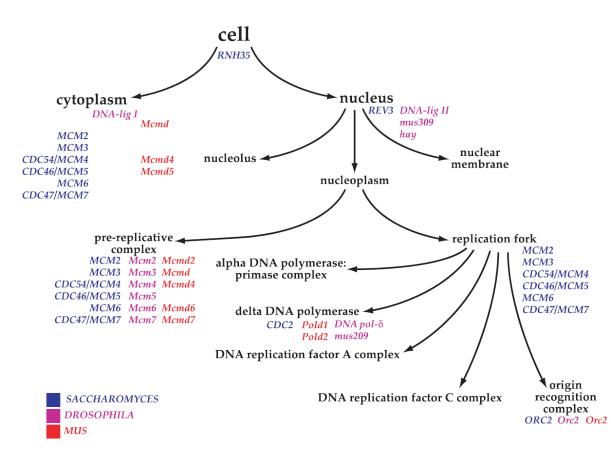
biological process

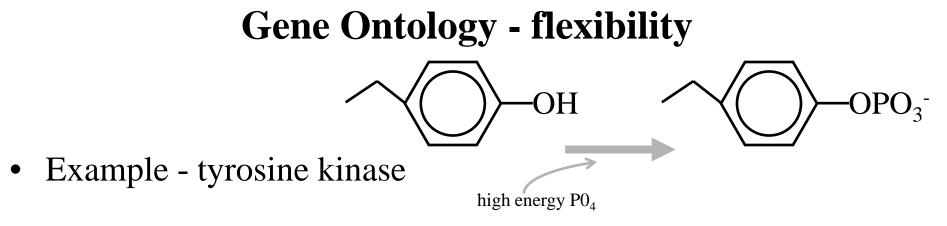
- DNA replication
- DNA repair
- DNA recombination cellular component
- nucleus

Gene Ontology - biological process


- "biological objective"
- not strictly chemistry
- nodes can have more than one parent
 - DNA ligation

- examples of high level
 - cell growth and maintenance
 - signal transduction


Ashburner et al, Nature Genet. 25, 25-29 (2006) "Gene Ontology: tool for the unification of biology"


Gene Ontology - molecular function

Gene Ontology - Cellular Location

• where is the gene active ?

- very common
- act on tyrosines in specific proteins
- 2 tyr kinase in me (different cells, processes)
 - molecular function same
 - biological process different
 - may have related sequences
- my tyr kinase / bacterial kinase
 - probably like above
- what about two different enzymes in same pathway ?

Gene Ontology - flexibility

- Imagine
 - protein 1 phosphorylates protein 2
 - protein 2 binds to protein 3 (which then binds to DNA)
- proteins 1, 2, or 3 may be coded on nearby genes
 - makes sense in terms of regulation / protein production
- different metabolic functions
- part of same "cellular process"
- useful ?
 - maybe one can predict the biological process
 - even without knowing exact function

Gene Ontology good / bad ?

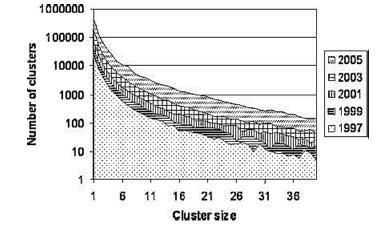
- Much more flexible than EC numbers BUT
- Aim :
 - use a restricted / finite set of key terms
- PDB web site gives "GO" terms (www.rcsb.org)
 - lots of proteins without assignments
- the three descriptors (ontologies) are independent
 - should better fit to nature
- definitely better for non-enzyme proteins
- better able to handle badly characterised proteins
 - biological role something to do with ...x

Predicting Function - homology

- Truth
 - two proteins have high sequence similarity
 - structures are similar
- Hope
 - they have similar functions
- Truth
 - proteins with little sequence similarity can have similar structures
 - do they have similar function ? (address this later)

Function via homology

- pure sequence problem
- strategy obvious
 - take sequence + blast, psi-blast, HMMs, ...


Problems

- 1. Are functions transferable ? Details later
- 2. Database growth leads to more mystery (next slide)
- 3. Propagation of errors

Database growth

- as more sequences are found, things should be more reliable
- number of mysteries also increases
- take a big databank
- cluster at 60 % identity
 - a cluster size 1 is a lonely protein
 - cluster size 6 has five friends

Propagation of errors

- How does a mis-annotation occur ?
 - one little mistake with EC numbers, lab, typo, bug
- How does it propagate ?
 - every successive, similar sequence will inherit mistake
- Does it happen ?
 - often
- Often seen ?
 - only when there are gross inconsistencies
 - work is independently repeated

Motifs and Pieces of Proteins

- more on this topic from Frau Willhoeft (ASE)
- Belief...
 - in a protein, small fragments are recognised
 - Names
 - motifs, patterns, sequence logos
 - one method to find them
 - collect proteins you believe have a feature
 - align
 - look at preferences within each file
 - scanning against patterns ?
 - regular expressions
 - classic sequence searches

LVPLFYKTC LVPlFYKTC LVPLFYKTC LVPLFYKTC LVPLFYKTC LIPPFYKTC LVPPFWKTC LVPPFWKTC LVPIAHKTC LIPIAHKTC

L[VI]P[LPI][FA]...

Motifs and Pieces of Proteins - Example Patterns

- Acetyl-CoA carboxylase carboxyl transferase alpha subunit signature
- Acetate kinase family signature
- Fish acetylcholinesterase signature
- Insect acetylcholinesterase signature
- Acetyl-CoA biotin carboxyl carrier protein signature
- AMP-binding signature
- Chitin-binding domain signature
- Cholinesterase signature
- Citrate synthase signature
- CLC-0 chloride channel signature
- Carbamoyl-phosphate synthase protein CPSase domain signature
- Snake cytotoxin signature
- + 10 000 more

- is this a function prediction ?
 - maybe (a bit)

Motifs and Pieces of Proteins - reliability

- how reliable ?
 - Übung on topic
 - good servers
 - calculate how often a match will be seen by chance
 - should be able to give reliable statistics
- do we like them ?
 - fundamental problem
 - difficult to see how characteristic a pattern is
 - not a causal relationship
- structural versus local sequence properties...

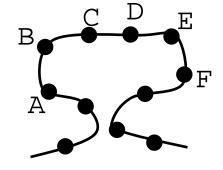
Motifs and Pieces of Proteins - reliability

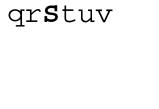
- function reflects 3D arrangement of residues
- how often will that be reflected by a short range sequence pattern ?
- good reason to start thinking about 3 D

important sites

First a little diversion

- Often one wants a set of proteins with similar structure
 - to look for patterns / features
 - classification treated more thoroughly later

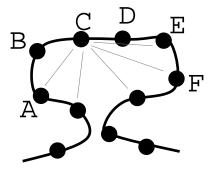

- More thorough in the grundlagen Kurs
- True:
 - proteins may have very different sequences
 - surprisingly similar structures

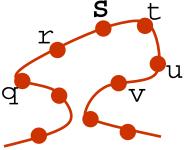

1ecd, 1mbd

no significant


sequence identity

- Aligning two structures (without sequence)
 - fundamentally much harder than sequence alignment (NP complete)
- sequence version calculate an alignment
 - to score **s**, compare against ABC..
- with structures
 - what is similarity of **s** with ABC..?
 - depends on gr..tu
- several approaches





ABCDEF

- slide struct 1 over 2
 - step wise try to look for match (not good)
- label each site in struct 1 & 2 with some information
- I can now compare the distance matrix around c to each in second structure
- I could also label each site
 - with secondary structure
 - any representation of structural properties

Result - we can take any structure and find similar ones

• without sequence similarity

Important ?

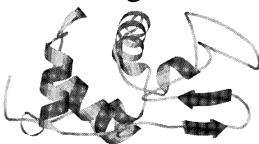
- belief evolution
- you have a functioning enzyme
 - constantly suffering mistakes, mutations, deletions, insertions
 - if the shape changes you die
 - if the function is lost you die
- eventually evolution will explore all sequences which have not killed you
- not such a good model for evolution but fundamental belief
 - sequence varies more than structure

- If you have the structure of your protein

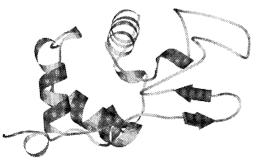
 search for sequence similar proteins
 if that fails
 - 2. search for structural similarity
- How reliable is this philosophy ?

Sequence homology ?

- the sequence hardly changes
- complete loss of enzyme activity
- different function


cryst. I MASE--CDKLMGGRFVGSTDPIMGMLSTSISTEQRLSEVDIQASIAYAKALEKAGILTKTELEKILSGLEKISEELSKGVIVVTQSDEDIGTANERRIKELIGDIAGKLATGRSF Gryst. II MASEARGDKLWGGRFSGSTDPIMEKLNSSIAYDQRLSEVDIQGSMAYAKALEKAGILTKTELEKILSGLEKISEEWSKGVFVVKOSDEDIGTANERRIKELIGDIAGKLATGRSF cryst. I NEGVVTDIKLFMKNSLSIISTHLLQLIKTLVERAAIEIDVILPGYT LQKAQPIRNSQFLLSHAVALTEDSERLGEVKKRINVLPLGSGALAGNPLDIDREMLRSELEFSSISIN cryst. II NEGVVTDIKLFMKNSLSIISTHLLQLIKTLVERAAIEIDVILPGYT LQKAQPIRNSQFLLSHAVALTEDSERLGEVKKRINVLPLGSGALAGNPLDIDREMLRSELEFSSISIN cryst. II NEGVVTDIKLFMKNSLSIISTHLLQLIKTLVERAAIEIDVILPGYT LQKAQPIRNSQFLLSHAVALTEDSERLGEVKKRINVLPLGSGALAGNPLDIDREMLRSELEFSSISIN cryst. I SMDAISERDEVVEFLSVATLLLHLSKMAEDLIIVSTSKFGFLTLSDAFSTGSSIMPQ KNPDSILLINSKAGRVFGRLASILMVLKGLPSTYNKDLQEDKRAVIDVDTITAVL cryst. I SMDAISERDEVVEFLSVATLLLHLSKMAEDLIIVSTSKFGFLTLSDAFSTGSSIMPQ KNPDSILLIRSKAGRVFGRLASILMVLKGLPSTYNKDLQEDKRAVIDVDTITAVL cryst. I SMDAISERDEVVEFLSVATLLLHLSKMAEDLIIVSTSKFGFLTLSDAFSTGSSIMPQ KNPDSILLIRSKAGRVFGRLASILMVLKGLPSTYNKDLQEDKRAVIDVDTITAVL cryst. I QVATGVISTLQISKENMERALTPEMLAEDLALVLVNKGVFFRQAHTASGKAVHLAETKGIAINNLTLEDLKSISPLFSSDV3QVFNFVNSVEQYTALGGTAKSSVTTOIEQLERI cryst. I QVATGVISTLQISKENMERALTPEMLATDLALVLVNKGVFFRQAHTASGKAVHLAETKGIJINKLSLEDLKSISPQFSSDVSQVFNFVNSVEQYTALGGTAKSSVTTOIEQLERI cryst. I MKKQKEQA

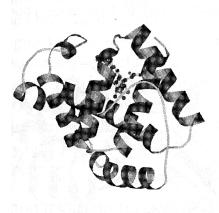
duck crystallin δI *non-enzyme* duck crystallin $\delta II/argininosuccinate lyase$ *enzyme*


HOMOLOGS LOSS OF ENZYME ACTIVITY 94% seq ID conserved active site

or

• 40 % identity still not enough

HOMOLOGS ENZYME / NON-ENZYME 40% seq ID disruption of active site


human α-lactalbumin non-enzyme

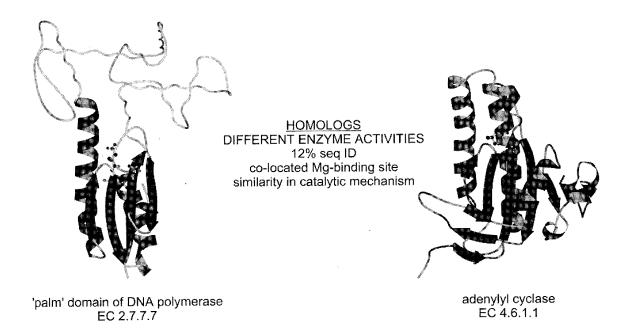
human lysozyme enzyme

Todd, A in The Proteomics Handbook ed Walker, J.M., Humana Press 2005, Totowa, "Deriving Function From Structure: Approaches and Limitations"

Homology

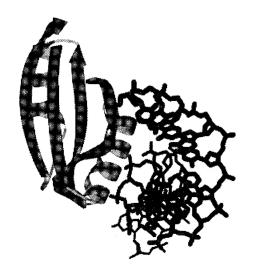
- What one normally expects
 - sequence is less conserved than function
- basis of all methods discussed so far

P. marinus hemoglobin


HOMOLOGS IDENTICAL FUNCTIONS 8% seq ID

V. stercoraria hemoglobin

Homology


- sometimes function will change
 - not totally unrelated
- example where function is not yes / no

Homology

• Worst case

SIMILAR FOLDS DIFFERENT FUNCTIONS no shared functional attributes

acylphosphatase

bovine papillomavirus-1 E2 transcription regulation protein, DNA-binding domain

Imagine

- search by sequence fails
- search by structure produces an impressive similarity

Protein Structure Classifications

- Names are for completeness only
- Nothing on this Folien examinable
- Protein alignments are difficult
- Classifications are made, put in boxes to be played with
- Pure structure similarity
 - program dali, classification FSSP
- Some very much hand made
 - "SCOP" ex Russian looks at new structures and puts them in classes
 - "CATH" English group (Orengo) mixes automatic decisions and hand "curation"
- Claim
 - if we can automatically find a "SCOP" class, we have predicted function

3D Motifs

- Philosophy with evolution
 - sequences change + structures change
- what really dictates enzyme function ?
 - the set of residues around the "active site"
 - even when the fold changes
- need methods to find similar arrangements of residues

β-lactamase class B EC 3.5.2.6 metal-dependent FUNCTIONAL ANALOGS DIFFERENT FOLDS IDENTICAL ENZYME ACTIVITY different active sites

β-lactamase classes A, C, D EC 3.5.2.6 catalytic Ser nucleophile

3D Motifs

- Ingredients
- definition of a 3D pattern / motif
- collection of data from proteins
 - library / database of patterns
- method to search for patterns
- start with collection

3D Motifs - data collection

- do we always know the catalytic residues ?
- horrible manual method ...
- One approach
 - for each enzyme in an existing database
 - if PDB file exists
 - if (authors have marked active site residues)
 - if (plausible agrees with chemical literature)
 - store residues + enzyme function in database
- another approach and example

3D Motifs - another approach

Scheme

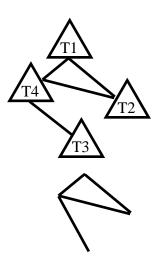
- definition of interesting groups
- for each protein in some database
 - find all interesting groups which are near each other
 - store the relationships
- for a new protein
 - look for sets of interesting groups
 - compare against the list for proteins in database
- what are interesting groups ?

3D Motifs - Interesting Groups

- for each amino acid, think about what is likely to be important
- slightly arbitrary
- emphasis on soluble groups (not exclusively)
- how are relationships defined ? stored

Amino acid	chemical groups
Alanine	
Arginine	guanidinium
Asparagine	amide
Aspartate	carboxyl
Cysteine	thiol
Glutamate	carboxyl
Glutamine	amide
Glycine	glycine
Histidine	aromatic, ammonium
Isoleucine	
Leucine	
Lysine	ammonium
Methionine	thioether
Phenylalanine	e aromatic
Proline	proline
Serine	hydroxyl
Threonine	hydroxyl
Tryptophan	aromatic, aromatic, amino
Tyrosine	aromatic, hydroxyl
Valine	

3D Motifs - relationships

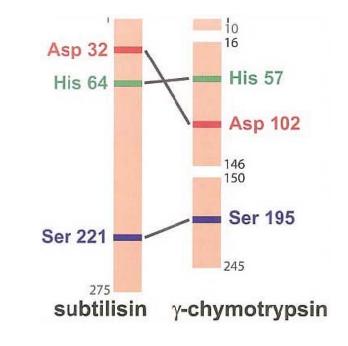

- for each group
 - centre of mass of group i is c_i
- walk over protein and find all pairs of groups $c_i c_i < 8 \text{ Å}$
- find every triangle
 - store triangle
 - types of groups (OH, carboxyl, ...)
 - buried / surface information
- connections of triangles
 - find every pair of triangles with a common edge - join them \bigwedge_{T_1}

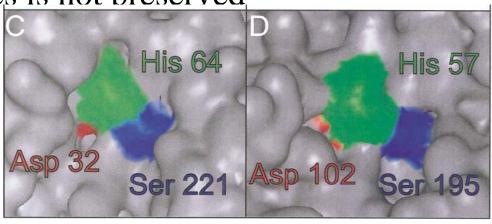
asp

tyr

3D Motifs - relationships

- From chemistry to a little graph
 - representation of which groups are most close to other groups
- Do this for every protein in library
 - each protein is represented by a graph
- Query protein
 - turn this into a graph
- Query procedure
 - look for common subgraphs (arrangements of groups)
- Does this work ? Examples from authors


Example result


"serine proteases"

- more than one family of proteins
 - 1. subtilisins
 - 2. chymotrypsins
 - no sequence similarity
 - no structural similarity
 - active sites are similar
- the order of important residues is not preserved
 - the structure is:

• Is this the best / only approach ?

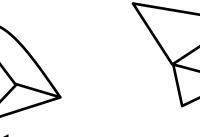
Jambon, M., Imberty, A., Deléage, G., Geourjon, C (2003), Bioinformatics, 52, 137-145, "... detect common 3D Sites in Protein Structures"

3D Motifs

- This was an example
 - starting from triangles is arbitrary
 - thresholds (points < 8 Å)
- Are results believable ?
 - false positives ? false negatives ?

3D Motifs – more examples and more details

- A different definition of 3D motifs
- how to search for them
- judging their significance


3D Motifs – skeletons / graphs

Ingredients and philosophy

- require a classification of families
- whole proteins turned into simple graphs
- look for common regions in families
 - call these fingerprints
 - a "family" may have several "fingerprints"
- look for fingerprints in new proteins
- assess significance
- Steps

3D Motifs – skeletonising a protein

- make $C^{\alpha}C^{\alpha}$ distance matrix
 - each edge is put into distance class:
 - nodes are C^{α}
- for family (typically 5 to 50 proteins)
 - look for common subgraphs

prot 1

prot 2

distance Å 0-4 4-6 6-8.5 8.5 – 10.5 10.5-12.5 12.5 – 15

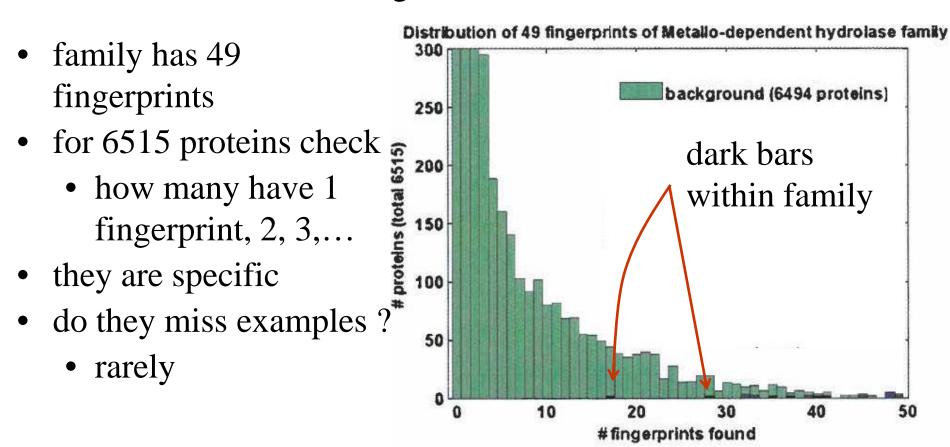
common subgraph

• not finished yet

3D Motifs – "fingerprint identification"

- for a family we have subgraphs
- repeat graph calculation for large set of proteins (unrelated)
- fingerprint subgraphs
 - in > 80 % of family
 - in < 5 % of background

Query protein ?


- protein \rightarrow graph
 - compare query + family graphs
- if query contains the "fingerprint" of a family
 - maybe part of family
- quantify this

3D Motifs – significance of matches

- A family has more than one fingerprint
- some fingerprints are unique, some often seen
- for each –calibrate the significance

- do they miss examples ?
 - rarely

from Bandyopadhyay, Huan, J... Wang, W and Tropsha, A., Protein Sci (2006) 15, 1537-1543

Summary of fingerprints

- Find classes (from literature)
- For each class
 - get 10's of "fingerprints" (distance information + residue type)
 - these are spatially conserved residues across a family
- For queries look for how many fingerprints are present
- Claim
 - this is not just like structure comparison
 - "SCOP" families are usually functionally the same
 - looks for patterns of matching residues

Summary of fingerprints

- Is method perfect ?
 - the distance definitions are rigid
 - relies on a database from literature
- graph matching
 - very expensive to do rigorously
 - "maximal common subgraph problem"

Summary of function prediction

- Function is difficult to define
 - best if turned into machine readable form
- Transfer of belief via homology dominates annotations
- Homology found / errors transferred
 - via sequence
 - via structure
- Motifs / patterns
 - via sequence or structure
 - rather arbitrary definitions
- Examples here (data collection, recognition)
 - only examples / case studies