Protein Struktur (optional, flexible)

Andrew Torda, Wintersemester 2009 / 2010, AST

- nur für Informatiker, Mathematiker, ...
- 26 Okt, 3 Nov 2009

Proteins - who cares?

- Most important molecules in life? Ask the DNA / RNA people
- structural (keratin / hair)
- enzymes (catalysts)
- messengers (hormones)
- regulation (bind to other proteins, DNA, ..)
- industrial biosensors to washing powder
- receptors
- transporters (O₂, sugars, fats)
- anti-freeze ...

Proteins are easy

- data (protein data bank, www.rcsb.org)
 - 61 000 structures
- literature on function, interactions, structure
- software
 - viewers, molecular dynamics simulators, docking, ...
- nomenclature and rules

Proteins are not friendly

- one cannot take a sequence and predict structure /function
- data formats are full of surprises, mostly old formats
- data contains error and mistakes

Protein Rules

- Physics /chemistry versus rules / dogma / beliefs / folklore
- Physics / Chemistry
 - protein + water = set of interacting atoms
 - can be calculated (not really)
- Rules (not quantified)
 - proteins unfold if you heat them (exceptions?)
 - if they contain lots of charged amino acids, they are soluble
 - if they are more than 300 residues, they have more than one domain,
 - proteins fold to a unique structure (could you prove this ?)
 - lowest free energy structure

Protein chemistry

- Chemists / biochemists may sleep (quietly)
- Short version
 - proteins are sets of building blocks (amino acids, residues, Reste)
 - 20 types of residue
 - chains of length few to 10^3 (100 or 200 typical)
 - small ones ($< \approx 50$) are peptides
- Longer version

Sizes

• $1 \text{ Å} = 10^{-10} \text{ m or } 0.1 \text{ nm}$

structure		size
bond	СН	1 Å
	CC	1.5 Å
protein radius		$10 - 10^2 \text{Å}$
α-helix spacing		5 ½ Å
$C^{lpha}_{\ i}$ to $C^{lpha}_{\ i+1}$		3.8 Å

myoglobin picture 2w6w

proteins are polymers

simple polymers

many times gives

example

what kind of polymer would this give?

Why are proteins interesting polymers?

boring polymer gives uninteresting structures

OK for plastic bags, haushaltsfolie.

Not nice regular structures..

What can we do to make things more protein like?

Giving proteins character 1

- more complicated backbone with H-bond
 - donor
 - acceptor

- basis of standard regular structures in proteins (secondary structure)
- repeating polymer unit:
- if this was all there was
 - all proteins would be the same

protein chemistry

- how can we construct specific structures?
 - different kinds of "R" groups

Putting monomers together

- protein synthesis story (biochemistry lectures)
- peptides and proteins
 - < 30 or 40 residues = peptide
 - > 30 or 40 residues = protein

side chain possibilities

- big / small
- charged +, charged -, polar
- hydrophobic (not water soluble), polar
- interactions between sites...

Backbone and consequences

- peptide bond is planar
 - partial double bond character (resonance forms)
 - shorter than other C-N
 - nearly always trans

two bonds can rotate

ramachandran plot

- can we rotate freely?
 - no... steric hindrance

Ramachandran plot

Backbone H bonds

- oxygen is slightly negative
- NH bond is polar

- H-bonds
 - can be near or far in sequence
 - fairly stable at room temperature

Secondary structure

- regular structures using information so far
 - rotate phi, psi angles so as to
 - form H-bonds where possible
 - do not force side chains to hit each other (steric clash)
- two common structures
 - α-helix
 - β -strand / sheet

a helix

- each CO of residue i H-bonded to N of i+4
- 3.6 residues per turn
- 2 H-bonds per residue
- side chains well separated

β-sheet

β -strand

- stretch out backbone and make NH and CO groups point out
 β-sheet
- join these strands together with H-bonds (2 H-bonds/residue)
- anti-parallel

• or parallel

diagram from Voet, D.J. and Voet, J.G, Biochemistry, Wiley, 2004

After α -helix and β -sheet

- do helices and sheets explain everything?
 - no
 - there is flexibility in the angles (look at plot)
 - geometry is not perfectly defined
 - there are local deviations and exceptions
 - other common structures
 - tighter helices
 - some turns
 - other structure
 - coil, random, not named

What determines secondary structure?

So far

- secondary structure pattern of H-bonding
- Almost all residues have H-bond acceptor and donor
 - all could form α -helix or β -sheet ? No

Difference?

- sequence of side-chains overall folding
- Why else are sidechains important
- chemistry of proteins (interactions, catalysis)

Fundamental dogma

• the sequence of sidechains determines the protein shape

Side chain properties

- properties
 - big / small
 - neutral / polar / charged
 - special (...)
- example
 - phenylalanine side chain looks like benzene (benzin)
 - very insoluble
 - benzene would rather interact with benzene than water
 - what if you have phe-phe-phe... poly-phe?
 - does not happen in nature (can be made)
 - would be insoluble
 - not like a real peptide
 - phe is a constituent of real proteins has a role

Properties are not clear cut

- You can be big / small, hydrophic / polar
 - combinations are possible

• Do not memorise this figure

Sidechain interactions

- ionic (if the sidechains have charge)
- hydrophobic (insoluble sidechains)
- H-bonds (some donors and acceptors)
- repulsive

Summary of amino acids (first dozen)

summary of amino acids (second lot)

Amino Acids by property

aromatic

tryptophan

phenylalanine

tyrosine

rather hydrophobic

leucine

$$\bigvee_{N}$$

cysteine

methionine

alanine

proline

glycine

valine

Polar

threonine

serine

$$O \longrightarrow N$$

glutamine

asparagine

$$0 \bigvee_{N} \bigvee_{N}$$

charged

histidine

$$\bigvee_{N}^{O}\bigvee_{N}$$

arginine

lysine

$$N$$
 O N

aspartate

glutamate

Hydrophobicity – how serious?

- very serious, but simplified
 - the lists above are
 - pH dependent
 - difficult to measure experimentally (some aspects)
 - is hydrophobicity really defined?

Other properties - size

$$\underbrace{\text{trp}} \xrightarrow{\text{big ... small}} \underbrace{\text{gly}}_{\text{N}} \xrightarrow{\text{gly}}$$

Other properties – chemistry / geometry

- proline
 - only one rotatable angle!
 - peptide bond sometimes cis

• pro ramachandran plot

gly and cys

- glycine
 - no side chain
 - can visit forbidden parts of phi-psi map (4 000 points here)

Summary so far

- proteins are heteropolymers
- backbone forms α -helices and β -strands (and more)
 - not sequence specific
- side-chains determine the
 - pattern of secondary structure
 - overall protein shape
- special amino acids
 - cys (forms disulfide bridges)
 - gly (can visit "forbidden" regions of ramachandran plot)
 - pro (no H-bond donor)
- how many sequences can one have ? $20^{n_{res}}$

Nomenclature

some rules are unavoidable

Alanine	Ala	A
Cysteine	Cys	C
Aspartic acid	Asp	D
Glutamic acid	Glu	E
Phenylalanine	Phe	F
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Lysine	Lys	K
Leucine	Leu	L
Methionine	Met	M
Asparagine	Asn	N
Proline	Pro	P
Glutamine	Gln	Q
Arginine	Arg	R
Serine	Ser	S
Threonine	Thr	T
Valine	Val	V
Tryptophan	Trp	\mathbf{W}
Tyrosine	Tyr	Y

- always write from N to C terminal
 - important convention

Definitions, primary, secondary ...

More definitions

- primary structure
 - sequence of amino acids
 - ACDF (ala cys asp phe...)
- secondary structure
 - α -helix, β -sheet (+ few more)
 - structure defined by local backbone
- tertiary structure
 - how these units fold together
 - coordinates of a protein

Protein structure general comments

- primary, secondary, tertiary structure ... how real?
 - primary/secondary well defined
 - edges can blur
 - supersecondary struct / tertiary

Representation

• Ultimately, our representation of a structure...

```
31.758
                                          13.358 -13.673
                                                           1.00 18.79
MOTA
             Ν
                 ARG
                                                                            1BPI 137
                                 31.718
                                          13.292 -12.188 1.00 14.26
                                                                            1BPI 138
MOTA
             CA
                 ARG
                                 33.154
                                          13.224 -11.664
                                                         1.00 18.25
                                                                            1BPI 139
MOTA
             С
                 ARG
                                                                            1BPI 140
                 ARG
                          1
                                 33.996
                                         12.441 -12.225
                                                           1.00 20.10
MOTA
             0
                                 30.886
                                         12.103 -11.724 1.00 16.74
                                                                            1BPI 141
MOTA
             CB
                 ARG
                                 29.594 11.968 -12.534 1.00 15.96
                                                                            1BPI 142
             CG
                 ARG
MOTA
                                                                            1BPI 143
             CD
                 ARG
                                 28.700
                                          13.182 -12.299
                                                           1.00 15.45
MOTA
                          1
                                          12.895 -12.546
                                                           1.00 12.82
                                                                            1BPI 144
                 ARG
                                 27.267
MOTA
          8
             NE
                                          13.087 -13.727
                                                                            1BPI 145
             CZ
                 ARG
                                 26.661
                                                           1.00 17.38
MOTA
                          1
                                 27.370
                                          13.558 -14.735
                                                           1.00 18.38
                                                                            1BPI 146
MOTA
         10
             NH1 ARG
                          1
                                 25.367
                                        12.797 -13.838 1.00 25.73
MOTA
         11
             NH2 ARG
                                                                            1BPI 147
         12
                                 33.800
                                         13.936 -10.586 1.00 17.07
                                                                            1BPI 148
MOTA
             Ν
                 PRO
                                          13.367
                                                  -9.840
                                                           1.00 14.99
MOTA
         13
             CA
                 PRO
                                 34.976
                                                                            1BPI 149
                                 34.960
                                          11.922
                                                  -9.660
                                                           1.00 13.11
                                                                            1BPI 150
MOTA
         14
             C
                 PRO
                                                  -9.391
         15
                                 33.962
                                          11.306
                                                           1.00 10.57
                                                                            1BPI 151
MOTA
                 PRO
         16
                 PRO
                                 34.922
                                          14.145
                                                  -8.523
                                                           1.00 15.81
                                                                            1BPI 152
MOTA
             CB
                                  x, v, z coordinates 7
         17
                                                           1.00 18.91
                                                                            1BPI 153
MOTA
             CG
                 PRO
         18
             CD
                                                           1.00 19.41
                                                                            1BPI 154
MOTA
                 PRO
                                                 -10.096
         19
                                 36.192
                                          11.317
                                                  -9.707
                                                           1.00
                                                                8.73
                                                                            1BPI 155
MOTA
             Ν
                 ASP
```

• drawing the structure?

Representations

• which residues could be involved in interactions?

Representations

Representations

Different levels of abstraction

Atomistic

For details

- where does a ligand bind ?
- which interactions is a residue involved in?

Ribbons

Overview

- shape
- number secondary struct elements
- symmetry

More abstract

- no idea of real shape
- very quickly classify a protein example
 - lots of serine proteases
 - lots of different sequences
 - all very similar at this level of abstraction

Why does structure matter?

- what residues can I change and preserve function?
- what is the reaction mechanism of an enzyme?
- what small molecules would bind and block the enzyme?
- is this protein the same shape as some other of known function?

Where do structures come from?

- X-ray crystallography
- NMR
- + a bit of small angle X-ray scattering, electron diffraction, ...

Atomic coordinates - warnings

- remember the coordinate file ?
- lots of problems
 - atoms and residues missing
 - numbering can be peculiar
- history
 - suits fortran 66 (think columns)
- non-standard amino acids
- nucleotides, ligands
- accuracy

ATO	4 1	N	ARG	1	31.758	13.358 -13.67	3 1.00	18.79	1BPI	137
ATO	4 2	CA	ARG	1	31.718	13.292 -12.18	8 1.00	14.26	1BPI	138
ATO	4 3	С	ARG	1	33.154	13.224 -11.66	4 1.00	18.25	1BPI	139
ATO	4 4	0	ARG	1	33.996	12.441 -12.22	5 1.00	20.10	1BPI	140
ATO	4 5	CB	ARG	1	30.886	12.103 -11.72	4 1.00	16.74	1BPI	141
ATO	4 6	CG	ARG	1	29.594	11.968 -12.53	4 1.00	15.96	1BPI	142
ATO	4 7	CD	ARG	1	28.700	13.182 -12.29	9 1.00	15.45	1BPI	143
ATO	4 8	NE	ARG	1	27.267	12.895 -12.54	6 1.00	12.82	1BPI	144
ATO	4 9	CZ	ARG	1	26.661	13.087 -13.72	7 1.00	17.38	1BPI	145
ATO	4 10	NH1	ARG	1	27.370	13.558 -14.73	5 1.00	18.38	1BPI	146
ATO	4 11	NH2	ARG	1	25.367	12.797 -13.83	8 1.00	25.73	1BPI	147
ATO	4 12	N	PRO	2	33.800	13.936 -10.58	6 1.00	17.07	1BPI	148
ATO	M 13	CA	PRO	2	34.976	13.367 -9.84	0 1.00	14.99	1BPI	149
ATO	4 14	C	PRO	2	34.960	11.922 -9.66	0 1.00	13.11	1BPI	150
ATO	4 15	0	PRO	2	33.962	11.306 -9.39	1 1.00	10.57	1BPI	151
ATO	4 16	CB	PRO	2	34.922	14.145 -8.52	3 1.00	15.81	1BPI	152
ATO	4 17	CG	PRO	2	34.058	15.391 -8.73	7 1.00	18.91	1BPI	153
ATO	4 18	CD	PRO	2	33.371	15.273 -10.09	6 1.00	19.41	1BPI	154

resolution, precision, accuracy

- coordinates 1.1 1.0 8.5
 - what do they mean?
- random errors
 - non-systematic / noise / uncertainty
 - should be scattered around correct point
- from any measurement there are errors $\pm x$
- x-ray crystallography has model for data
 - uncertainty (probability)
 - resolution (experimental)
 - < 1 Å (good)
 - > 5 Å (bad, but excusable monster structures)

X-ray crystallography

- non-systematic errors
 - small problems: (O and N look the same)
 - few huge problems
 - newer structures are better
- proteins are not static
 - overall motion
 - local motion

NMR structures

- different philosophy to X-ray
 - lots of little internal distances
 - do not quite define structure
- generate 50 or 10² solutions
 - look at scatter of solutions
- as with X-ray
 - some parts are well defined
 - some not

structure 1sm7

Summarise and stop

- roles of proteins
- heteropolymers 20 types of amino acid / residue
- geometry avoiding atomic clashes, forming H bonds
 - leads to regular secondary structure
- chemistry of amino acids very different to another
- unique structure for a sequence reflects these differences
- representations of structures
- structures in PDB are experimental have errors