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Protein stability

• Our model

denatured (D)
unfolded
non-native

native
(N) folded

ΔG

• free energy change on
• folding
• denaturing (− ∆G)

• for a stable protein
• ∆GN→D > 0

Andrew Torda, Wintersemester 2009 / 2010, GST
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Protein Stability

• what is known empirically
• definitions
• a stability surprise
• some explanations
• weaknesses of models

Δ G convention
• ΔGfolding= − ΔGunfolding

• define ΔG > 0 as stable so reaction is
• folded → unfolded          (native → denatured)

• some books and papers work with other convention
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Empiricism / rules

• more positive ∆G, more stable the protein
• most proteins are marginally stable (∆G ≈ 0)
• proteins can be denatured by

• pH, concentrated ions, temperature, solvent, surface area
• too hot ?

• eggs cook, people die (many reasons)
• some bacteria live at 373 K – their proteins are not denatured
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Rules

• nature cares about free energy ∆G
• usually measure free energy
• ∆G = ∆H – T ∆S

• G free energy (Gibbs)
• H enthalpy

potential energy including volume effects U + PV
• S entropy

• chemistry books normally work with ∆G standard free energy
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measurement
Folded  / Unfolded
• how to measure

• spectroscopy
• absorbance (optical / UV spectroscopy)
• rotational (CD / ORD)
• fluorescence
• NMR

• activity
• …

• usually – two states (native / denatured) that somehow look 
different

Energies
• calorimetry
• measurements of [native] / [denatured]
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Two state model

• model requires an energy barrier

• what if Δ G = 0
• ½ molecules folded
• ½ molecules denatured

G

space of conformations 

Δ G
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First picture of stability

• what holds a protein together ?
• forces between atoms

• bonds, electrostatic, Lennard-Jones
• atoms also repel

• cannot be so simple
• atoms would just fall into correct position
• Δ G would always be very positive
• missing ?

• effect of solvent

• in native structure there are "correct contacts"
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• in native structure there are correct contacts

One atom in native structure
• interacts with correct neighbours

In the non-native structures there are also contacts
• atom interacts with “wrong” neighbours

• balance of forces
• stability has to do with

• energy / enthalpy Hnative –Hdenatured

Balance of energy terms

native

some 
denatured / 
non-native
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More forces
• how many polar / charged groups are there ?

• NH + CO backbone every residue
• polar / charged sidechains

• all can interact with water

• stability will depend on Hnative – (Hdenatured + Hprotein-H2O)
• maybe  Hnative – Hdenatured & Hnative – Hprotein-H2O

Balance of energy terms
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Explain denaturing

Why do these denature a protein ?
pH, concentrated ions, temperature, solvent, surface area
• pH ? change the charge on some groups, remove favourable 

interactions
• ions ? provide competition for charges, H-bonds

• temperature ? add kinetic energy, push particles out of minima
• solvent ? remove favourable protein-solvent interactions
• surface area ? surface tension / protein –air interactions 
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Entropy version 1

∆G = ∆H – T ∆S
• considered ∆H terms, what is ΔSfolded-unfolded ?

• entropy depends on the number of conformations (k ln Ω) or 

better ∑
=

−
statesn

i
ii ppk

1

ln

lots of 
configurations

few 
configurations

• as a protein unfolds
• number of conformations ↑
• entropy goes ↑

• ∆S will favour denaturing
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Balance of forces version 1

∆G = ∆H – T ∆S
• proteins should melt / cook / 

fall apart if you heat them
T

Δ G

melting temperature

• ribonuclease unfolding

Tsong, T.Y, Baldwin, R.L, Elson, E.L., Proc Natl Acad Sci, 68, 2712-2715, 1971
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Entropy version 2

∆G = ∆H – T ∆S
• but can we treat ∆S as a constant ? Is it T dependent ?
• meaning of ∆Sfolded-unfolded
• roughly how does the number of states change

• Ωfolded definitely goes up with temperature
• related to heat capacity

( )

unfolded

folded

unfoldedfolded

unfoldedfolded

k

k
SSS

Ω
Ω

=

Ω−Ω=

−=∆

ln

lnln
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Entropy change on unfolding

• depending on heat capacity one has a curve like

• radical consequence
• entropy might make proteins

less stable as you cool them

• can you cook an egg by cooling it ?

• combining these properties

T

Δ S
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protein stability

∆G = ∆H – T ∆S

T

Δ G

T

Δ S

if ΔS is 
constant

what ΔS is 
probably like

T

Δ G
likely ΔG

• what is seen / claimed ?



Andrew Torda 07/12/2009 [ 16 ]              

Old measurements

• protein stability (Δ G) is a 
balance of energy and entropy

• note sign convention
∆G = ∆H – T ∆S

• difference of two large numbers 
comes to nearly zero

• what might you expect ?

enthalpy

entropy

Privalov, P.L., Khechinashvili, N.N, J. Mol. Biol. 86, 665-684, 1974

lysozyme
RNAase
chymotrypsin
myoglobin
cytochrome C
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final version

• claim.. for typical 
protein

• bold line –measured
• dashed – extrapolated

• implies
• you can denature a 

protein by cooling
(cook egg by 
freezing ?)

• what is measured

Becktel, W.J., Schellman, J.A., Biopolymers, 26, 1859-1877, 1987
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free energy experimental

• Looks like there will 
be cold denaturing
• below zero

• curve is different for 
all proteins

• does this prove 
"cold denaturing" ?

Privalov, P.L., Khechinashvili, N.N, J. Mol. Biol. 86, 665-684, 1974

lysozyme
RNAase
chymotrypsin
myoglobin
cytochrome C
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Cold denaturing

• controversial
• often predicted to happen below 0

• hard to measure
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Entropy and Enthalpy Summary / Consequences

Enthalpy H / potential energy
• will always favour folding
Entropy
• will always favour unfolding

Debatable
• how much does entropy change with temperature ?
• depends on heat capacity of protein

• Two state model ? native → denatured
• what does Δ G = 0 mean ?
• definitely too simple – proteins partially unfold
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proteins and systems

• energy
• energy of native state is important but
• energy of denatured state is equally important

• consequence
• naïve optimisation may not work
• you propose to make a protein more stable by putting in 

residues with opposite charge
• lowers energy of native structure
• also lowers energy of non-native structure
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proteins and systems

• you are always looking at Δ G = Gnative − Gdenatured
• nobody knows what the denatured state

looks like
not just for temperature
• chemical denaturant ?

• maybe simply binds to unfolded protein
• lower energy – more stable

water is important (water entropy)
• unfolding a protein changes water order

• correct way to look at system is
Δ G = Gnative_protein+water − Gdenatured_protein+water

• next … motions in proteins

cannot be 
measured



Andrew Torda 07/12/2009 [ 23 ]              

Motions, frequencies and proteins

• Motions and dynamics in proteins
• how big are they ?
• how fast are they ?

• Examples
• Types

• without barriers
• with barriers

• Energies
• equal probability
• not equal probability

Andrew Torda, Wintersemester 2009 / 2010, GST
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Nasty question .. answered later

• I have motions in a protein at T=273 (cold)
• heat protein to 300 K

• do the frequencies of motions change ?
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Protein motion examples

• Early evidence that motions are important
• myoglobin structure (1962)

• carries O2, maybe first protein structure solved
• no channel could be found for O2 to reach haem group
• could only be explained if parts of protein move and open up

Frauenfelder, McMahon and Fennimore, Proc Natl Acad Sci USA, 100, 8615-8617 (2003)

• many similar stories
• activity of protein cannot be 

explained by simple structure
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Protein motion examples

• Fundamental arguments
• bonds, angles vibrate, rotate
• basis of many kinds of spectroscopy

• infra red, fluorescence, NMR, …

• More fundamental arguments
• at T = 0 everything dead
• at T = 300 (this room) everything has kinetic energy

• everything is moving
• meaning of temperature ? T, Ekin ?

• ½ mv2

Ekin kinetic energy
T temperature
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Energy surfaces

• run around on an energy surface

possible conformations

E

• energy surface and energy should determine motions
• too complicated
• energy surface not well known

• work with simpler models
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Motions with or without barriers

• Without barriers
• one state + fluctuations

x

E

x

E

• With a barrier
• two states

• both ideas simpler than previous picture
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Harmonic oscillators

• find them everywhere..
• energy = kx2

• what is the frequency of motion ω ?

x

y

( ) ( )δtωAtx += cos

• A is the amplitude
• ω is the frequency
• δ is phase

• Detour .. why does this make sense
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Harmonic oscillator

x→F←

kx
dt

xdm

kxxm
kxma

kxF

−=

−=
−=
−=

2

2



( )
0

sosay

0

2
2

2

2
1

2

2

2

=+

==

=+

xω
dt

xd
m

kωm
kω

kx
dt

xdm

• has a solution..
( ) ( )δtωAtx += cos
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Is the solution valid ? ( ) ( )δω += tAtx cos

( )( )

( )δωω

ωδω

+−=

+−=

tA

tA
dt
dx

sin

sin

( )

( )

( )( )δtωAω

δtωωA

ωδtωωA
dt

xd

+−=

+−=

+−=

cos

cos

cos

2

2

2

2

• which can be re-written as xω
dt

xd 2
2

2

−=



Andrew Torda 07/12/2009 [ 32 ]              

( ) ( )δtωAtx += cos

02
2

2

=+ x
dt

xd ω

xω
dt

xd 2
2

2

−=

• from first arguments

• so 

• and 

x→F←

022 =+− xx ωω

is a solution

• back to 

Is the solution valid ? ( ) ( )δω += tAtx cos
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Frequency and energy models

• What is meaning of 

• second derivative / curvature

• What happens if you change temperature ?
• angular frequency ω depends on energy surface
• temperature does not appear here

• what does change ?

xω
dt

xd 2
2

2

−=

x

E

2
2

dt
xd
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Changing temperature (oscillator)

• Change temperature
• Ekin changes
• Ekin = ½ mv2

• Ekin = ½ mA2ω2sin2(ωt+δ)
• amplitude changes

( )δωω +−=== tAvx
dt
dx sin
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Frequencies and amplitudes

• For a given temperature
• energy distributes amongst modes/ degrees of freedom
• Ekin the same for different modes
• Ekin = ½ mv2 = ½ mA2ω2sin2(ωt+δ)

• I have two modes in one protein
• a slow motion / low frequency (bending of a hinge)
• a fast / high frequency (movement of a sidechain)

Ekin = ½ mv2 = ½ mA2ω2sin2(ωt+δ)
• if ω is low A is high

• low frequency motions are large amplitude
• big motions are slow

x

y
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Summary so far (harmonic oscillator)

• Maybe appropriate for motion without barriers
• only approximation
• frequencies do not depend on temperature
• we imagine a protein to have

• many oscillators
• some fast some slow

• bigger motions have lower frequency
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Movement with barriers

• how often do you move from right to left
(and left to right)?

• our model
• assume some random influences
• velocity from Ekin = ½ mv2, v ∝ Ekin

½

• better Ekin
½ random

• water molecules and other atoms are always hitting you

• if we reach the top
• we may be moving slowly

• may move to right (no change)
• may fall into left energy well (change)

• consequence

x

E

x

E

E barrier
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Movement with barriers

• rate directly reflects
• how often does a particle have enough energy to reach top of 

barrier ?

• Boltzmann rule…  (more formal next semester)

kT
E

i

i

ep −
∝

0

1

energy

p high T

low T

• implications
• small barriers (small E)

• easy / fast to cross
• as temperature ↑ rate ↑

k Boltzmanns const
T temperature
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Which model is better ?

• do frequencies of motions change ?
• if we have motion in a well (harmonic oscillator) .. No
• if we move between energy minima … Yes

Return to early question

• empirical
• raise temperature and see if it changes

• physical model
• what you believe in..
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different kinds of motions (smaller)

• bond stretching, angle bending
• nearly harmonic

• torsion angles
• separate energy wells

• other motions may be locally like harmonic
• vibrations of packed atoms
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Bigger motions

• Calmodulin example
• many Å and probably rather slow
• too move from one conformation to the next – many barriers

Gifford, Walsh, Vogel, Biochem J. 405, 199-221(2007), Structures and … EF-hand motifs
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Summary

• models are too simple
• most energy terms are not kx2

• locally not a bad approximation
• we do not have simple energy barriers
• many more than two states

• spectrum of motions 
• many motions are a mixture (concerted)
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Detection of states

• Are all the different structures present at room temperature ?
• I have two states A and B

• if EA−EB much bigger than kT (some kJmol-1)
• only one state will be seen

kT
EE

B

A
BA

ep
p −

=

Barrier size
small 
barriers

• Barriers very small
• all particles have plenty of

energy
• effectively not present

• may be the case for some rotations
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Types of motions

motion amplitude Å log10 of time (s)

bond vibration 0.01 – 0.1 -14 to -13

sidechain rotation 
surface sidechains

5 – 10 -11 to -10

protein hinge 
bending

1 – 5 -11 to -7

sidechain rotation 
inside protein

5 -4 to 0

helix / strand 
breakage 

5 – 10 -5 to 1
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Summary

• Motions are necessary to explain chemistry
• NMR and X-ray structures are time averages
• usually

• small motions fast
• big movements slow

• temperature dependence
• different for different kinds of movement
• can be used to estimate energy barriers
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