### **Analysis, Comparison of Proteins**

Andrew Torda, wintersemester 2009 / 2010, GST

#### From previous lectures

- we know about protein structures / coordinates
- we know how coordinates are collected

#### What kind of analysis would we like to do?

- recognising common features
- classifying
  - (useful for prediction)

#### Philosophy

- ways to measure similarity between structures
- ways to find similar pieces / "motif"s
- most common motif? Secondary structures

#### Next few weeks

- Secondary structure definitions
- Classifying protein structures
- Domains
- Supersecondary structure
- Protein similarity sequence versus structure
- Sequence space
- Classifications hierarchical
- Classifications other
- Comparison of proteins
- touching on evolution, alignments, ...

### **Secondary Structure Recognition**



from coordinates



assumes structures recognised

how to define / recognise secondary structure ?

# **Defining Secondary Structure**

What do I want ?

- at each residue, label as to secondary structure type
  - no ambiguity
  - labels at residues not between!
- I do not want probabilistic answers (more soon)
- remember not all residues are in recognisable  $\alpha$ -helix or  $\beta$ -sheet

### **Secondary Structure From Coordinates**

#### Start with $\alpha$ -helices

- what do we know
  - look like helices
  - 3.6 residues per turn
  - H-bond pattern
    - N residue i to i+4
  - residue backbone angles



# **Using Backbone Angles**

Given coordinates, easy to calculate



#### **Problems**

- what are my thresholds?
- what if I see one residue with angle?

# **Problems With Using Angles**

thresholds



- minimum number of residues
  - what if I see only one residue with perfect angles?
  - not forming H bonds
  - need 3 or 4 residues

# Maybe We Should Use H-Bonds

#### We have the coordinates

- should be easy to recognise all H bonds
- criteria?
- distance  $r(ON) < \approx 3.6 \text{ Å}$

$$C = 0 \dots H - N$$
 $C = 0$ 

• angle ? (  $\approx 120^\circ$ )



# A practical definition



$$E = 332 \ q_1 q_2 \left( \frac{1}{r_{\text{ON}}} + \frac{1}{r_{\text{CH}}} - \frac{1}{r_{\text{OH}}} - \frac{1}{r_{\text{CN}}} \right)$$

- require E < -3 (arbitrary!)
- note as *r* grows, *E* goes to 0

#### **Problems with short helices**

What if I see only 3 or 4 residues?

- real helix has 2 H-bonds per residue
- what if I see one?



#### Compromise

- call this a turn (only has one H bond)
- $\alpha$ -helix definition
  - at least two consecutive (4 residue) turns

#### Useful definitions ( $\alpha$ -helix)

- recognise an H-bond *i*,*i*+4 (either
  - $r_{\rm ON}$  + angle  $\alpha$  or
  - general distance formula
  - = turn
- two successive turns
  - = minimal  $\alpha$ -helix
- more overlapping helices
  - = longer helix
- all we have done is an  $\alpha$ -helix

a β-strand / sheet

- much more difficult
  - parallel versus anti-parallel
  - H-bond neighbours not known
    - 5-109
    - 6-110
    - 7-111 ... parallel

or

- 5-109
- 6-108
- 7-107...anti-parallel
- formalise this



# Defining a β-sheet

- start with a bridge
- parallel bridge
  - H-bond (i-1, j) & H-bond (j, i+1) or
  - H-bond (j-1, i) & H-bond (i, j+1)





# **Defining a β-sheet**

- start with a bridge
- parallel bridge
  - H-bond (i-1, j) & H-bond (j, i+1) or
  - H-bond (j-1, i) & H-bond (i, j+1)



- ladder = one or more consecutive bridges
- sheet = one or more consecutive ladders with shared residues
- similar definition for anti-parallel sheets



### Are these problems real?

#### Do thresholds matter?

- do programs give the same answer?
- if we use secondary structure for comparisons of proteins
- comparisons with experiment

#### Can we set perfect thresholds?

- not all H-bonds are the same
- look at  $\psi$ - $\varphi$  map, borders are not clear
  - mobility, finite energy
- coordinates have experimental error
- our programs generate worse coordinates (holes, distortions)



# From secondary to higher levels Classification

- Why classify proteins?
- Why recognise similarities
  - function prediction
  - structure prediction
    - vague idea of structure for mutagenesis, applications
- Why might this be useful?
  - how many structures are there?

# **How Many Protein Structures Are There?**

- Protein Databank  $\approx 5.5 10^4$
- 90 % sequence similarity  $\approx 1.7 10^4$
- different shapes 2 to 5  $10^3$
- implications for structure prediction?
  - how many possible structures can we think of?
    - exponential
  - how big is the real search space?
    - really  $10^3$  to  $10^4$

### Why So Few Structures

- discretization of space (makes it look smaller)
- physical reasons
  - compactness, stability
  - advantages of H-bonded conformations
- history / evolution
  - imagine all proteins evolve from some original molecule
  - evidence
    - theoretical geometric constructions
    - chemical construction of artificial protein(s)

# **Before Classifying**

- earlier description of structure
- primary (sequence)
- secondary ( $\alpha$ -helices,  $\beta$ -sheets, ...)
  - supersecondary?
- tertiary
  - arrangement of helices / sheets or
  - where atoms are in space
- quaternary...
- we need idea of domains, then supersecondary structures

# **Domains in Biochemistry**

History / biochemistry / no structures

- invented story
- we have a big protein
  - catalyses  $A \rightarrow B$
  - C regulates it
- cleave protein (break with enzyme) to two parts
  - 1 still converts  $A \rightarrow B$
  - 2 binds C
  - interpretation
    - catalytic domain
    - C binding domain
- more generally
  - different pieces of protein, responsible for different functions

# **Domain Concept Useful?**

- Many times a whole protein cannot be crystallised, solved by NMR
- attack protein with enzymes to break up
- look for activity in pieces, solve structures of pieces



- literature / PDB full of "xxx domain of yyy"
- attractive?
  - makes big proteins seem manageable
  - building block concept
    - attractive in evolutionary terms

#### **Domains in Structures**

• Many structures solved look like...



- histocompatibility module (1iak)
  - 3 domains + another protein
- are they always so clear ?
- porphobilinogen deaminase (1gtk)





#### **Domain definition version 3**

#### Three reasonable definitions

- biochemistry
- structures
- look for conserved units in sequence comparisons

# **Domains for today**

compact structural units

#### **Domains for classification**

structural classifications often domain based

#### **Classifications In General**

- 1. secondary structure
  - we see collections of residues and classify into recognisable types
- 2. different types of domain
  - soon
- 1b. supersecondary elements?
  - are there some common small arrangements of  $\alpha$ -helices,  $\beta$ sheets ?

#### A Supersecondary Structure

- $\beta$ -hairpin ( $\beta$ -turn- $\beta$ ) fits idea of common motif
  - described as built on secondary structure + specific H-bonds





#### **More Supersecondary Structures**

- helix-turn-helix  $(\alpha X \alpha)$ 
  - DNA binding proteins
- helix-longer\_loop-helix
  - Ca<sup>++</sup> binding

•

#### Who cares?

- repeated patterns / motifs suggests there are smaller number of structural units to recognise
- modularity appeals
- functional association
- conforms to some ideas on protein folding (more next semester)

# Why I Do Not Like Supersecondary Structure

- ideal picture...
  - primary structure arrangement →
  - secondary structure / arrangement →
  - supersecondary structure →
  - tertiary structure or domains
- implies supersecondary structure is useful hierarchical element
  - not really used!

# **Sequence vs Structural Similarity**

#### Background

- in the real world we usually have sequence information first
- want to make guesses about protein structure

I have two aligned protein sequences

• are they structurally similar?

#### Old rule

- > 25 % sequence similar similar structures
- < 20 % cannot tell
- 20 % < x < 25 % "twilight zone"

Is this universally valid?

# **Sequence Similarity** → **Structure**

#### Take a set of pairs of proteins

- find those which are not structurally similar
- look at sequence similarity
- old rule is not valid
- 50 residues
  - > 30 % seq
- 150 residues
  - > 20 %



- rule:
  - sequence similarity (length dependent) very good indicator of structural similarity

# **Using Sequence Similarity**

- consequence
  - I could try to categorise proteins based on sequence
- tools
  - any alignment program (blast, fasta, clustal, ...)
- method
  - survey all proteins in the protein databank
  - collect all pairs > x % (or use more sophisticated threshold)

50%

| • | magnit (ion 2000) | siimarity | num clusters |  |
|---|-------------------|-----------|--------------|--|
|   | result (jan 2009) | 90 %      | 20 002       |  |
|   |                   | 70%       | 17 490       |  |

• much more than 2 to  $5 \times 10^3$  ?

maybe some of my classes are not really different

14 906

# **Sequences Not Similar**

- Sequences similar?.. similar structure
- Sequences different?
  - ??
- Example
  - 100's examples



#### **An Example Family**

- example, neighbours of 1cun chain A
  - look at sequence identity (%id)
  - alignment length (lali = number of residues)
  - root mean square diff in Å

| No | Chain | %id | lali | rmsd | Description                                                   |  |  |  |  |  |
|----|-------|-----|------|------|---------------------------------------------------------------|--|--|--|--|--|
| 1  | 1cunA | 100 | 213  | 0.0  | ALPHA SPECTRIN                                                |  |  |  |  |  |
| 2  | 1hciA | 24  | 111  | 1.6  | ALPHA-ACTININ 2                                               |  |  |  |  |  |
| 3  | 1ek8A | 12  | 106  | 4.4  | RIBOSOME RECYCLING FACTOR                                     |  |  |  |  |  |
| 4  | 1oxzA | 9   | 91   | 2.5  | ADP-RIBOSYLATION FACTOR BINDING PROTEIN GGA1                  |  |  |  |  |  |
| 5  | 1eh1A | 8   | 102  | 4.6  | RIBOSOME RECYCLING FACTOR                                     |  |  |  |  |  |
| 6  | 1hx1B | 5   | 105  | 3.1  | HEAT SHOCK COGNATE 71 KDA                                     |  |  |  |  |  |
| 7  | 1dd5A | 8   | 103  | 4.7  | RIBOSOME RECYCLING FACTOR                                     |  |  |  |  |  |
| 8  | 1lvfA | 9   | 98   | 2.6  | SYNTAXIN 6                                                    |  |  |  |  |  |
| 9  | 1bg1A | 9   | 99   | 2.3  | STAT3B                                                        |  |  |  |  |  |
| 10 | 1hg5A | 5   | 98   | 3.0  | CLATHRIN ASSEMBLY PROTEIN SHORT FORM                          |  |  |  |  |  |
| 11 | 1hs7A | 14  | 92   | 2.5  | SYNTAXIN VAM3                                                 |  |  |  |  |  |
| 12 | 1dn1B | 10  | 101  | 2.7  | SYNTAXIN BINDING PROTEIN 1                                    |  |  |  |  |  |
| 13 | 1ge9A | 6   | 108  | 4.6  | RIBOSOME RECYCLING FACTOR                                     |  |  |  |  |  |
| 14 | 1fewA | 8   | 125  | 3.5  | SECOND MITOCHONDRIA-DERIVED ACTIVATOR OF                      |  |  |  |  |  |
| 15 | 1qsdA | 4   | 90   | 2.4  | BETA-TUBULIN BINDING POST-CHAPERONIN COFACTOR                 |  |  |  |  |  |
| 16 | 1e2aA | 6   | 95   | 2.8  | ENZYME IIA                                                    |  |  |  |  |  |
| 17 | 1i1iP | 7   | 95   | 3.3  | NEUROLYSIN                                                    |  |  |  |  |  |
| 18 | 1fioA | 8   | 100  | 2.6  | SSO1 PROTEIN                                                  |  |  |  |  |  |
| 19 | 1m62A | 8   | 81   | 2.8  | BAG-FAMILY MOLECULAR CHAPERONE REGULATOR-4                    |  |  |  |  |  |
| 20 | 1k4tA | 6   | 147  | 25.8 | <b>DNA T(</b> http://ekhidna.biocenter.helsinki.fi/dali/start |  |  |  |  |  |

# **DIVERSION Sequence Space**

- convenient way to explain ideas of sequence similarity
- conventional spaces
  - 1D (x), 2D (x, y), 3D (x, y, z), 4D (x, y, z, w), ...
  - let us estimate how big a space or problem is
  - how many variables do I have ? (a, b, c, ...)
  - how many values can each variable have ?
    - a 3 values, b 4 values, c 5
    - number of points in space =  $3 \times 4 \times 5$
- protein sequences
  - each position can have 1 of 20 values
  - total number of sequences =  $20 \times 20 \times ... = 20^{Nres}$
  - like a space of  $N_{res}$  dimensions

# Representing a Sequence

• protein sequence and structural coordinates

|     | 1   | 2   | 3     | 4 | 5 | 6     | 7 | • • • | $N_{res}$ |
|-----|-----|-----|-------|---|---|-------|---|-------|-----------|
| X   | 1.2 | 2.3 | • • • |   |   |       |   |       | 10.3      |
| У   | 2.4 | 3.5 | • • • |   |   |       |   |       | 11.1      |
| Z   | 1.7 | 2.9 | • • • |   |   |       |   |       | 15.5      |
| seq | W   | A   | С     | A | A | • • • |   |       | D         |

- consider the first three residues
  - WAC (for pictures only)

### Finding a Sequence in This Space

- real diagram is a box of  $N_{res}$  dimensions
  - this one 3 dimensions



|     | 1   | 2   | 3   | 4 | 5 | 6   | 7 | ••• | N <sub>res</sub> |
|-----|-----|-----|-----|---|---|-----|---|-----|------------------|
| X   | 1.2 | 2.3 | ••• |   |   |     |   |     | 10.3             |
| y   | 2.4 | 3.5 | ••• |   |   |     |   |     | 11.1             |
| Z   | 1.7 | 2.9 | ••• |   |   |     |   |     | 15.5             |
| seq | W   | A   | С   | A | A | ••• |   |     | D                |

• looking for sequences...

# **Families in Sequence Space**

- Similar sequences should land near each other
- How realistic?
  - picture is a simplification
  - only works for  $N_{seq1} = N_{seq2}$
  - very useful
    - distances between sequences



• Will return next semester

# Structure vs Sequence

- there are 1000's of such families
- summarise
  - similar sequences
    - similar structures
  - very different sequences
    - similar or different structures
- why ?



# **Structures < Sequences... Why?**

#### **Evolution 1**

- many small changes
- if structure changes, function breaks, you die
- sequences change as much as possible within this constraint

#### **Evolution 2**

- maybe some cases of convergent evolution
- impossible to prove

#### Consequences of sequence based categorisation

- we will have different classes, but really same protein shape
- Surprising?
- consider near universal proteins
  - 100's millions years evolution, function largely preserved
- chemistry
  - sequence does determine structure, many sequences could fit structure

#### **Back to Classification**

## Sequence classification

- good, reliable, similar class = similar structure
- not enough to find all similarities
- need for structure based methods

## Philosophies

- 1. evolution
- 2. just classify proteins

#### **Evolution**

- diagram →
- we expect a hierarchy



# Imposing a Hierarchy on Proteins



- parts may correspond to evolution α
- top level?
- How useful and applicable ?
  - examples



# **Example from "CATH"**



Mainly  $\alpha$ .Non-bundle.Globin-like.1cpc chain A

## Lots of families

#### α-helix bundles?

• ≈226 domains, 3 % surveyed structures

β-sandwich ≈1236 domains, 15 %

some families?

• < 0.01 %

## Interesting...

 some families very popular, some not







# Why are some families populated more than others?

- more next semester
- are some structures more stable?
- are some older in evolutionary terms?
- can some "accommodate" more sequences / tolerate more mutations
- is this a reflection of physics?
- no PDB is very biased
  - mainly soluble, globular proteins which crystallised
  - very few membrane-bound proteins

# **Supersecondary Structure**

- Was supersecondary structure helpful here?
- members of a given family probably have common supersecondary motifs.
  - not all proteins can be generated as a collection of motifs

# **Evolutionary interpretation**

- given a classification does it reflect evolution?
  - maybe

## **Evolution and Classification**

- for very similar proteins, easy
- more remote ?
  - maybe



# **Forget Evolution**

- Is the hierarchy really justified?
  - at low levels maybe
  - at higher levels ?  $(\alpha, \alpha/\beta, ...)$



- Imagine I can compare arbitrary proteins
- have some measure of similarity
- use this to classify
- Huge problem
  - proteins are different sizes and shapes
  - how to compare ?



# **Protein Structure Comparison / Numerical**

## Most common protein structural question

- how much has my protein moved over a simulation ?
- how similar are these NMR models for a structure?
- how close is my model to the correct answer?
- more difficult
  - how similar is rat to human haemoglobin?
- two cases
  - 1. same protein, same number of atoms
  - 2. different proteins
- first
  - measures for easy cases

# **Numerical Comparison of Structures - Easy**

- what units would we like?
  - scale of similarity (0 to 1.0)?
  - comparison of angles
  - distance / Å? most common / easy to interpret



consider analogy with standard deviation / variance





#### From Standard Deviation to RMSD

#### Analogy with comparing a set of numbers

• get average (mean) 
$$\overline{x} = N^{-1} \sum_{i=1}^{N} x_i$$

- variance and standard deviation,  $\sigma$
- apply this to coordinates of r and r'

$$RMSD = \left(N^{-1}\sum_{i=1}^{N}\left|\vec{r}_{i}-\vec{r}_{i}'\right|^{2}\right)^{\frac{1}{2}}$$

$$\sigma^{2} = N^{-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

$$\sigma = \left( N^{-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \right)^{\frac{1}{2}}$$

#### Vital

- formula above, names below
- rms = rmsd = RMSD = root mean square difference

Applying this...

# Calculating rmsd

$$RMSD = \left(N^{-1}\sum_{i=1}^{N} |\vec{r}_i - \vec{r}_i|^2\right)^{1/2}$$



- start at one end
- difference between pairs of atoms

$$|\vec{r}_i - \vec{r}_i|^2 = (x_i - x_i')^2 + (y_i - y_i')^2 + (z_i - z_i')^2$$

- huge problem..
  - coordinates are normally...
- what to do?



#### **Translation and Rotation**

#### translation

- c.o.m. = centre of mass
- subtract difference vector

$$\vec{r}^{c.o.m} = \left(\sum_{i=1}^{N} m_i\right)^{-1} \sum_{i=1}^{N} \vec{r}_i m_i$$

$$\vec{r}_{diff} = \vec{r}^{c.o.m.} - \vec{r}^{\prime c.o.m.}$$

- rotation
  - messier..
  - find rotation matrix to minimise  $RMSD = \left(N^{-1} \sum_{i=1}^{N} |\vec{r_i} \vec{r_i}'|^2\right)^{\frac{1}{2}}$
- summary
  - translate
  - rotate
  - apply formula
- still not finished

#### Which Atoms?

What tells me the shape of a protein?

- backbone trace
- What happens if you include all atoms?
- bigger rmsd
- normal choice
  - Cα
- sometimes
  - N,  $C^{\alpha}$ , C
- all atoms?
  - when a model is very close

Still not finished with simple rmsd



#### **Parts Of Proteins**

- two models of a molecule
  - mostly very similar
  - is *rmsd* a good measure?
- identify similar parts



define

```
superimpose ({r},{r'}, {d}) {
        translate ({r,},{r'}, {d})
        rotate ({r},{r'}, {d})
}
where {d} is some subset of sites
```

## **Selection of Interesting Atoms**

• define a threshold like thresh = 2 Å $\{d\} = \{|r_i - r'_i|\} i = 1..N$ sort {d} diff= rmsd  $(\{r_i\},\{r_i'\})$ while (diff > thresh) { remove largest d superimpose  $(\{r\},\{r'\},\{d\})$ recalculate distances  $diff = rmsd (\{r\}, \{r'\}, \{d\})$ if (diff < thresh)</pre> return {d}, diff else

• result? a subset of interesting atoms

return broken

#### **Subsets of Atoms**

- Originally, quantify structural differences as Å rmsd
- Alternative quantity implied
  - number of residues used for *rmsd* below threshold
- implicit rule
  - as number of atoms  $\downarrow$  calculated  $rmsd \downarrow$

## Where we were up to

- Superimposing structures
  - selecting atoms
- Structures of the same size

#### Where to

- distance matrices for comparison
- finish comparison of structures
  - structures of different sizes
- introduction to modelling
  - interesting bits
- time for some revision next week

# Why Not Use rmsd





- helices identical, fold identical rmsd?
- superposition requires rotation, affects all atoms
- big *rmsd*, but structure has hardly changed
- do not see that helices are identical
- solutions
  - use angles (other problems)
  - distance matrices

#### **Distance Matrices With Numbers**

#### Another characteristic of structures

- $C^{\alpha}$  distance matrices
- simply measure the distance between  $C^{\alpha}$  atoms

|       | 1 | 2   | 3   | 4   | 5     | 6     | 7   | • • • |     | N   |
|-------|---|-----|-----|-----|-------|-------|-----|-------|-----|-----|
| 1     | 0 | 3.8 | 6   | 7   | • • • |       |     |       |     |     |
| 2     |   | 0   | 3.8 | 5   | • • • |       |     |       |     |     |
| 3     |   |     | 0   | 3.8 | 4.5   | • • • |     |       |     |     |
| 4     |   |     |     | 0   | 3.8   |       |     |       |     |     |
| 5     |   |     |     |     | 0     | 3.8   |     |       |     |     |
| 6     |   |     |     |     |       | 0     | 3.8 |       |     |     |
| 7     |   |     |     |     |       |       | 0   | 3.8   |     |     |
| • • • |   |     |     |     |       |       |     | 0     | 3.8 |     |
|       |   |     |     |     |       |       |     |       | 0   | 3.8 |
| N     |   |     |     |     |       |       |     |       |     | 0   |

# **Distance Matrix for Recognising Structure**

One way to summarise a structure

- plot  $C^{\alpha}$  distance matrix, points below 4 Å
- can make  $\alpha$ -helices and  $\beta$ -sheets clear



## Distance matrix for comparing structures

- take two similar proteins
  - look at the difference of distance matrices



# **Comparing Distance Matrices**

consider two very different structures



• pictures are better than any single measure, but...

# From Distance Matrices to Single Number

For lots of comparisons, single number is more convenient

- root mean square (rms) difference of distance matrices
  - define distance between  $C^{\alpha}$  atoms i and j

$$d_{ij} = \left| \vec{r}_i - \vec{r}_j \right|$$

• rms of distance matrices measure is

$$rms = \left(\frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j>i}^{N} (d'_{ij} - d_{ij})^{2}\right)^{\frac{1}{2}}$$

- just like all other rms quantities
  - normalised over top half of matrix

# **Summary – Comparing Models / Structures**

- rmsd
  - most popular
  - requires superposition (translate + rotate)
  - can be fooled by "hinge" movements
- to look at the shape of a molecule use  $C^{\alpha}$  or backbone atoms
- numbers in Å have a physical meaning
- to look for the common core of a structure, find a subset of backbone
- other measures may be better than *rmsd*
- weakness of all measures
  - a single number can never capture all information

# **Comparing Different Proteins**

- compare red and blue proteins
- if we know which residues match
  - easy (use any *rms* formula)
- which residues match?
  - sequence alignment?

| protein | 1 | A | C | D | W | Y | T | R | P | K | L | н | G | F | D | S | A | C | V | N |
|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| protein | 2 | A | C | D | W | W | T |   | P | K | V | н | G | Y | D | S | A | C | V | N |



- pink residues ignore
- is this useful for similar proteins? very (rat vs human haemoglobin)
- for very different proteins? no





# **Comparing Very Different Proteins**

- sequence alignment vs identity
  - as identity ↓, errors ↑
- consequence
  - methods needed
    - operate on C<sup>α</sup>
    - do not require sequence
- how difficult?
  - superposition requires recognising the deleted residue
  - can we use standard dynamic programming?
    - no
  - gap/insertion at any position, any length
    - combinatorial explosion



# Strategies For Comparing Different Structures 1. use secondary structure

- Combinatorial explosion is the problem
  - reduce size of problem
  - use elements of secondary structure





- define secondary structure
- search for superposition
- for each residue
  - find closest  $C^{\alpha}$  in partner structure
  - use the set of matching residues to calculate *rmsd*

# 2. Peptide fragment strategy

- more general version of idea on previous page
- basis of most popular methods
- Ingredients
  - break protein into overlapping fragments (length 6 or 8)
  - protein is no longer a string of residues nor a whole structure



• each fragment is a little distance matrix



# **Fragment Based Comparison**

• any two distance matrices can be compared





• two proteins length N and M can now be compared...

|                       |       | 1   | 2   | 3     | 4     | 5     | • • • |       | /V-/ |
|-----------------------|-------|-----|-----|-------|-------|-------|-------|-------|------|
| nuntain 2             | 1     | 1.3 | 1.0 | 2.0   | 0.9   | • • • |       |       |      |
| protein 2 fragments \ | 2     | 2.7 | 2.3 | 0.5   | • • • |       |       |       |      |
|                       | 3     | 5.5 | 4.4 | • • • |       |       |       |       |      |
|                       | 4     | 0.1 | 0.5 | 0.3   | 3.3   | 4.2   | • • • |       |      |
|                       | 5     | 1.9 | 4.4 | 5.5   | 0.3   | 3.3   | • • • |       |      |
|                       | 6     | 4.4 | 1.6 | 1.7   | 5.0   | 2.3   | • • • |       |      |
|                       | • • • | 4.1 | 3.1 | 3.3   | 4.4   | 0.2   | 3.3   | • • • |      |
|                       | M-7   | 5.2 | 1.1 | 0.1   | 5.5   | 4.4   | 0.1   | 3.3   | 0.1  |

protein 1 fragments →

- imagine *rmsd*
- this is now like a sequence comparison problem

# **Finding Equivalent Fragments**

find optimal path through matrix

classic dynamic programming method like sequence

comparison

|       | 1   | 2   | 3               | 4     | 5     | • • • |       | N-7 |
|-------|-----|-----|-----------------|-------|-------|-------|-------|-----|
| 1     | 1.3 | 1.0 | 2.0             | 0.9   | • • • |       |       |     |
| 2     | 2.7 | 2.3 | 0.5             | • • • |       |       |       |     |
| 3     | 5.5 | 4.4 | • • •           |       |       |       |       |     |
| 4     | 0.4 | 0.5 | <del>0.</del> 3 | 3.3   | 4.2   | • • • |       |     |
| 5     | 1.9 | 4.4 | 5.5             | 75.3  | 3.3   | • • • |       |     |
| 6     | 4.4 | 1.6 | 1.7             | 5.0   | 23    | • • • |       |     |
| • • • | 4.1 | 3.1 | 3.3             | 4.4   | 0.2   | 3.3   | • • • |     |
| N-7   | 5.2 | 1.1 | 0.1             | 5.5   | 4.4   | 0:1   | 3.3   | 0.1 |

- like sequence comparison
  - find optimal path through matrix
  - classic dynamic programming method (N & W, S & W)
  - uses gap penalties

# **Comparing Different Size Protein Structures**

- Break protein into overlapping fragments
- fragments can be compared to each other via distance matrices
- align like sequences
- from aligned fragments, get list of aligned residues
- using aligned residues, calculate *rmsd*, *rms* of overall distance matrices

# **How Important Are These Similarities?**

- survey 1000 proteins
- find structurally similar pairs
- plot sequence identity

may not be found by sequence methods



# **Summary of All Protein Comparisons**

## Classification of proteins

- could be done by sequence, better by structure Structure comparison
- for one protein
  - selection of atoms
- for different proteins
  - requires list of matching atoms
- for similar proteins
  - can use pairs from sequence alignment
- for often dissimilar proteins
  - pure structure based method