Protein Design

Andrew Torda, wintersemester 2010 / 2011, AST

- What is it?
- Why ?
- Experimental methods
- What we need
- Computational Methods
- introduce
 - Monte Carlo
 - a pruning algorithm

What is protein design?

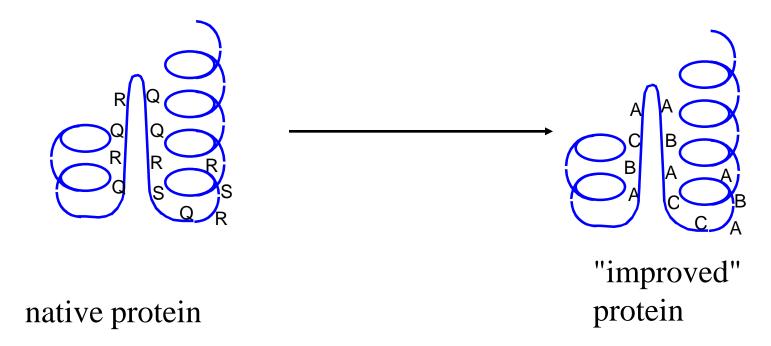
- Assumption
 - you can write a protein sequence on a piece of paper
 - a molecular biologist can produce it
- Most general
 - you have a protein which is useful (enzyme, binding, ...)
 - you want to make it more stable
 - temperature
 - solvents (tolerate organic solvents)
 - pH
 - we concentrate on stability

Experimental approaches

- Bacteria / selection
- For binding
 - phage display
 - in vitro evolution
- stability more difficult
- computational methods...

Formalising the problem

- We have a working structure
 - want to make it more stable

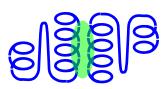


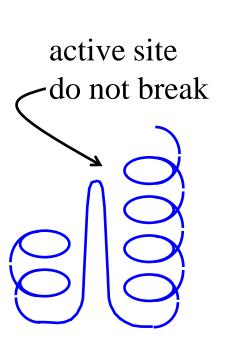
- Rules
 - structure should not change
 - should be able to fix some residues (active site, important)...

Fixing / specifying residues

Examples

- lysine (K) often used for binding
 - change a residue to K and protein does not fold
 - mission:
 - adapt the rest of the residues to be stable
- change all residues, but not those in active site
- change some residues at surface to be soluble
- change some residues at surface to stop dimers





Ingredients

- Score function (like energy)
- Search method

Score function

- how does sequence fit to structure?
- sequence $S=\{s_1, s_2, ...s_N\}$
- coordinates $R = \{ \mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_N \}$
- score = f(S, R) (diffferent nomenclature soon)
- mission
 - adjust S to as to maximise score (minimise quasi-energy)

Score function

- how do amino acids
 - suit structure?
 - suit each other?

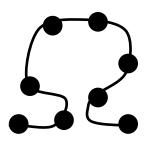
$$score = \sum_{i=1}^{N_{res}} score_{struct}(s_i, R) + \sum_{i=1}^{N_{res}} \sum_{i>i}^{N_{res}} score_{pair}(s_i, s_j, R)$$

- *score*_{struct} might have
 - backbone preferences (no proline in helices, ..)
 - solvation (penalise hydrophobic at surface)
- score_{pair}
 - are residues too big (clashing)
 - are there holes? charges near each other?
- messy functions
 - lots of parameters

Searching

• systematic search – how long?

- search space for $N_{res} = 20 \times 20 \times ... = 20^{Nres}$
- search space complex
 - every time you change a residue, affects all neighbours
 - effects neighbours of neighbours
- brute force not a good idea
- two methods here
 - 1. Monte Carlo / simulated annealing
 - 2. Pruning / dead end elimination



Monte Carlo

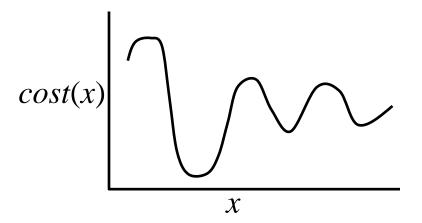
- more formally next semester
- first the problem

The sequence optimisation problem

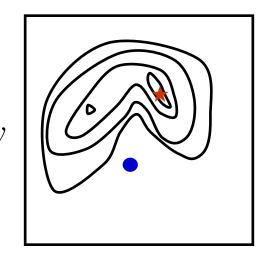
- discrete
- local minima / correlations in surface
- high dimensional

dimensions and correlations

• a 1D problem



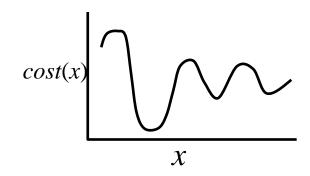
- local minima
- minimum of x depends on y
- cannot optimize x and y independently
- what are correlations in this problem?

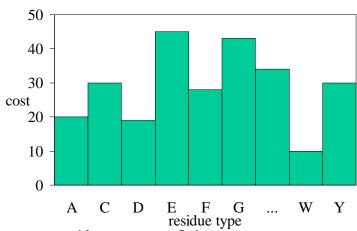


Discrete vs continuous problems

- for a continuous function use gradients
 - to optimise
 - to recognise minima / maxima
 - continuous functions
 - step in one direction is good
 - try another in same direction

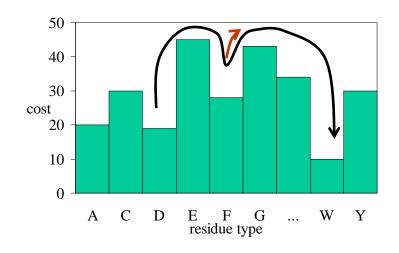
- no gradients
- order of labels arbitrary
 - ACDE or ECAD
- discrete
 - step in one direction may be no predictor of best direction





what do we want?

- from step to step (sequence to sequence)
 - be prepared to move in any direction
 - if the system improves, try not to throw away good properties
 - must be willing to go uphill sometimes
- philosophy
 - take a random move
 - if it improves system
 - keep it
 - if cost becomes worse
 - sometimes keep it
 - sometime reject



Acceptance / rejection

- for convenience, write $cost(S_n)$ neglect the coordinates R Sign convention
- system (sequence) at step n is S_n
- after a random step, cost changes from $cost(S_n)$ to $cost(S_{n+1})$
- $\Delta c = cost(S_{n+1}) cost(S_n)$
- our sign convention: if $\Delta c < 0$, system is better

When to accept?

- if Δc is a bit < 0 accept
- if Δc is a bit > 0, maybe OK
- if $\Delta c >> 0$, do not accept

Formal acceptance rule

- $-\Delta c < 0$, $e^{-\Delta c}$ is between 0..1
- $-\Delta c \approx 0$ then $e^{-\Delta c} \approx 1$ as $\Delta c \to \infty$ then $e^{-\Delta c} \to 0$
- formalise this rule

```
set up S=S_0 and cost(S_0)

while (not finished)

S_{trial} = random step from S

\Delta c = cost(S_{trial}) - cost(S)

if (\Delta c < 0) /* accept */

S=S_{trial}

else

r = rand (0..1)

if (e^{-\Delta c} \ge r)

S=S_{trial}
```

vorsicht! not the final method

why we need temperature

- As described
 - system will run around
 - try lots of new configurations
 - sometimes accept bad moves
 - always take good moves
 - may never find best solution
 - imagine you are at a favourable state
 - most changes are uphill (unfavourable)
 - many of the smaller ones will be accepted
 - if we were to find the best sequence, the system would move away from it
- how to fix ?

why we need temperature

- Initial sequence is not so good
 - let the system change a lot and explore new possibilities
- after some searching, make the system less likely to go uphill
- introduce the concept of temperature T
- initially high T means you can go uphill (like a high energy state)
- as you cool the system down, it tends to find lowest energy state
- change acceptance criterion to

 as

 $e^{\frac{-\Delta c}{T}}$

$$T \to \infty$$
, $e^{\frac{-\Delta c}{T}} \to 1$

put this into previous description

$$T \to 0, \quad e^{\frac{-\Delta c}{T}} \to 0$$

why we need temperature

```
set up S=S_0 and cost(S_0) set T=T_0
while (not finished)
     S<sub>trial</sub> = random step from S
                                                /* \varepsilon bit smaller than 1 */
     T = \epsilon T
     \Delta c = cost(S_{trial}) - cost(S)
     if (\Delta c < 0)
              S= S<sub>trial</sub>
     else
              r = rand (0..1)
              if (\exp(-\Delta c/T) \ge r)
                       S= S<sub>trial</sub>
```

- name of this procedure
 - "simulated annealing"

Final Monte Carlo / annealing

- History applications
 - discrete problems travelling salesman, circuit layout
- deterministic? No
- convergence? Unknown
- practical issues
 - what is a random step?
 - change one amino acid? change interacting pairs?
- easy to program
- lots of trial and error
- statistical properties next semester
- can we reduce the search space?

Pruning

- Are there elements of sequence which are impossible?
 - at position 35, no chance of Y, W, I, L, ...
- can one find impossible combinations
 - reduce the search space so it can be searched systematically (brute force)
- ... dead end elimination method
- use an energy-like nomenclature

Nomenclature

- we are not dealing with
 - free energy G or F or potential energy U or E
- but let us pretend
 - score is E
- rule : more negative E , better the system
- structure is fixed so neglect R / r terms
- define a function $s_i(a)$ as the residue type at site i
 - can take on 20 values of "a" why?
 - foreach (a in A, C, D, E.., W, Y) evaluate energy corresponding to a
- our energies ?
 - two parts pairwise and residue with backbone

Nomenclature

- E is (quasi-energy) of whole system
 - label E_1 as the terms that depend on residue + fixed environment
 - E_2 as the energy terms that depend on pairs

$$E = \sum_{i=1}^{N_{res}} E_1(s_i) + \sum_{i=1}^{N_{res}} \sum_{j \neq i}^{N_{res}} E_2(s_i, s_j)$$

• if we are interested in site *i* and being in state *a* what do we have to look at ?

$$\sum_{i=1}^{N_{res}} E_1(s_i(a)) + \sum_{i=1}^{N_{res}} \sum_{j>i}^{N_{res}} E_2(s_i(a), s_j(b))$$

Nomenclature and rules

- there are $20 (N_{type})$ residues
- which fits best to the fixed environment?
- implies testing each of the N_{type} for a $\min_{a} E_1(s_i(a))$
- what is the best energy type *a* at site *i* could have, interacting with one site *j* ?

$$E_1(s_i(a)) + \min_b E_2(s_i(a), s_j(b))$$

• what is the best energy that type *a* at *i* could have considering all neighbours?

$$E_1(s_i(a)) + \sum_{j \neq i} \min_b E_2(s_i(a), s_j(b))$$

- for each a can work out what is the best score it could yield
 - loop over b
 - within loop over *j*

Dead-end elimination method

- worst energy that type c at i could have considering all neighbours? $E_1(s_i(c)) + \sum_{i \neq i} \max_d E_2(s_i(c), s_j(d))$
- when can one eliminate (rule out) residue type a at site i?
- for any residues a, c
- if the best energy for a is worse than the worst for c
 - a cannot be part of the optimal solution ... if

$$E_1(s_i(a)) + \sum_{j \neq i} \min_b E_2(s_i(a), s_j(b)) > E_1(s_i(c)) + \sum_{j \neq i} \max_d E_2(s_i(c), s_j(d))$$

Dead-end elimination method

$$E_1(s_i(a)) + \sum_{j \neq i} \min_b E_2(s_i(a), s_j(b)) > E_1(s_i(c)) + \sum_{j \neq i} \max_d E_2(s_i(c), s_j(d))$$

using this approach

```
for (i = 0; i < N_{res}; i++)

foreach a in N_{type}

calculate worst score for a

calculate best score for a

foreach a in N_{type}

foreach b in N_{type}

if best(a) > worst (b)

remove a from candidates
```

• how strong is this condition?

DEE condition

- much of the time
 - cannot really rule out type a
- example ?
 - initial
 - 2×10^{27}
 - final
 - searchable in 90 cpu hr

Dahiyat, B.I, Mayo, S.L. (1997), Science 278, 82-87

deterministic

Combining ideas

- use DEE to get a list of candidate residues at each position
- search remaining space with Monte Carlo / simulated annealing
- not deterministic

Success

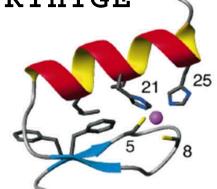
- Method
 - Dead end elimination + systematic search

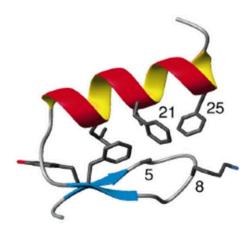
designed QQYTAKIKGRTFRNEKELRDFIEKFKGR

native KPFQCRICMRNFSRSDHLTTHIRTHTGE

New sequence

- about 20 % similar to start
- not related to any known protein (still)
- Structure solved by NMR
- Problem solved?
 - maybe not

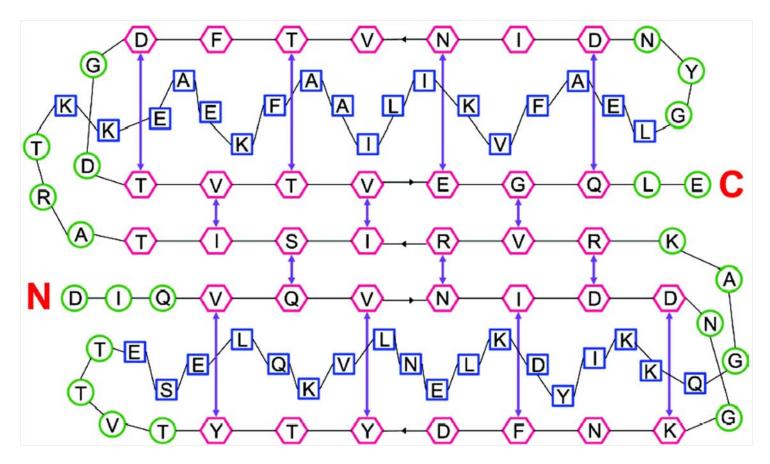




Success

Mission

- sketch a new protein topology
- build a sequence to fit it



Success

Methods

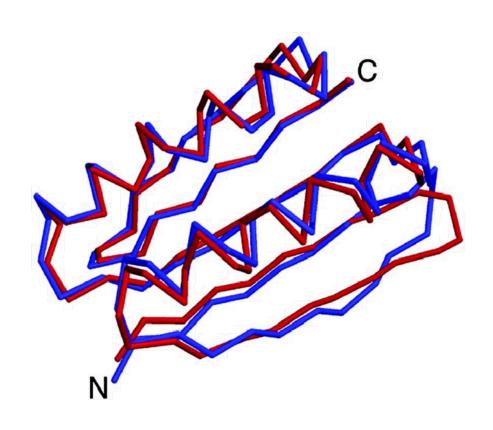
• pure Monte Carlo

Result

apparently new sequence

Structure

- as predicted
- solved by X-ray
 - phasing story
- Problem solved
 - unclear (how many failures ?)



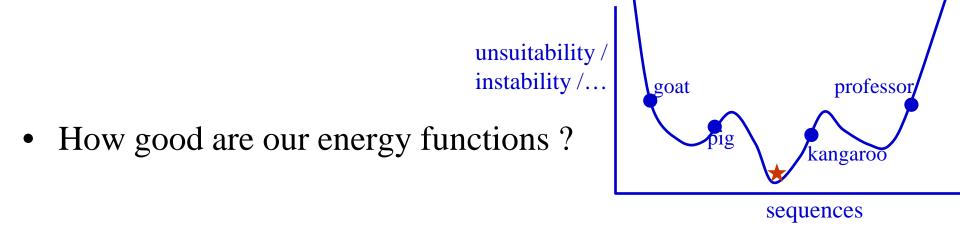
Methods so far

	Monte Carlo	Dead-end elimination
guaranteed global optimum	no	does not try
deterministic	no	yes

Only one answer?

May not matter

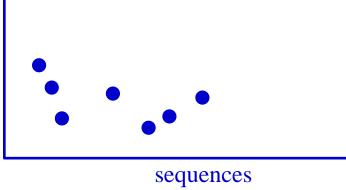
- consider real proteins compare human, goat, ...
 - all stable all slightly different
- implication
 - there may be many solutions which are equally good



Determinism and energy

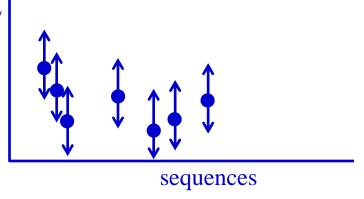
I have a perfect score / energy function

unsuitability / instability /...



- I have errors / approximations
 - best answer could be any one unsuitability /

instability /...

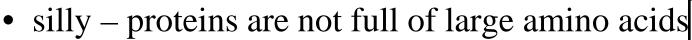


Problems – stability / energy

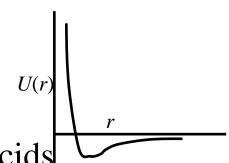
- energy functions
- what do we mean by energy?
- example two charges

$$U(r) = \frac{q_1 q_2}{Dr}$$

- example two argon atoms $U(r) = 4\varepsilon \left(\sigma^{12}r^{-12} \sigma^6r^{-6}\right)$
- make energy better?
 - replace every amino acid by a larger one (more contacts – more negative energy)



• what determines stability?



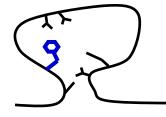
Problems – stability / energy

- stability does a molecule prefer to be folded or unfolded?
- what is unfolded? \(\sqrt{\text{or}} \quad ? \)

- my energy function tells me to change "X" to "Y"
 - it affects both the good stand bad
 - has it affected the energy difference?
 - no guarantee
- current score functions?
 - some pure potential energy
 - very difficult to estimate ΔG

Problems - sidechains

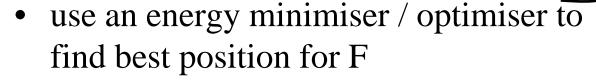
- side chain positions
 - can I ever calculate the energy if I change X to Y?
 - insert a phe into this structure
 - what interactions does it have?



- how to cope with side chain positions in a practical way
 - optimise location of sidechains
 - use average
 - explicit rotamers

Sidechains – optimise at each step

- I start with known protein
 - change $A \rightarrow F$



- sensible?
 - we have a gigantic search space
 - explicit optimisation of one side chain would be expensive
- silly?
- I change $A \rightarrow F$, but the rest of the side chains may move
- bad idea

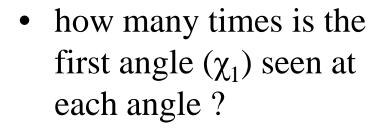
Sidechains – use averaging

- ignore the problem of sidechain geometry
 - at room temperature, side chains move
 - small (middle of protein) to big (surface)
 - we cannot expect Å accuracy anyway
- rather fast
- what if we want to worry about atoms?

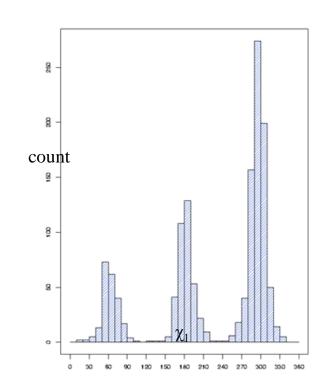
Sidechains – use rotamers

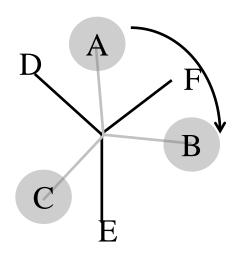
• sidechains can move anywhere but

• there are preferences in diagram – three more likely states



- how to use this ?
 - look for most popular angles (60, 180, 300)

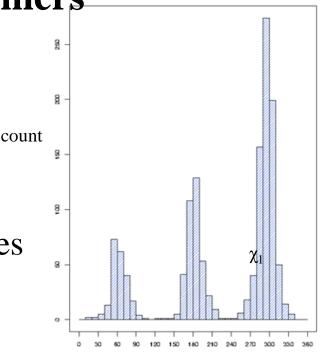




Sidechains – use rotamers

- For this example
 - do not have 1 cys residue
 - replace with cys1, cys2, cys3
 - treat all amino acids similarly
- more complicated because of more angles
- consequence
 - N_{type} of amino acids >> 20
- requires that you have a pre-built rotamer library

- Monte Carlo (random moves between residues or rotamers)
- dead end elimination (will remove impossible rotamers)



Problems – viability

- Designed sequences must
 - fold
 - be expressed + produced

Summary

- Experimental approaches
- Nature of the problem discrete (not continuous)
- Optimisation methods (MC, DEE)
- Score functions
 - not energy, not free energy, not potential energy
- Success / state of the art
 - not many examples from literature
 - failure rate?
 - cost
- Definitely not a routine method