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What is protein design ?
• Assumption

• you can write a protein sequence on a piece of paper
• a molecular biologist can produce it

• Most general
• you have a protein which is useful (enzyme, binding, …)
• you want to make it more stable

• temperature
• solvents (tolerate organic solvents)
• pH

• we concentrate on stability
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Experimental approaches
• Bacteria / selection
• For binding

• phage display
• in vitro evolution

• stability – more difficult

• computational methods…
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Formalising the problem
• We have a working structure

• want to make it more stable
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• Rules
• structure should not change
• should be able to fix some residues (active site, important)..
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Fixing / specifying residues
Examples
• lysine (K) often used for binding

• change a residue to K and protein does not fold
• mission:

• adapt the rest of the residues to be stable
• change all residues, but not those in active site
• change some residues at surface to be soluble
• change some residues at surface to stop dimers

active site
do not break
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Ingredients
• Score function (like energy)
• Search method

• how does sequence fit to structure ?
• sequence S={s1, s2, ..sN}
• coordinates R = { r1, r2, … rN}
• score = f (S, R)       (diffferent nomenclature soon)
• mission 

• adjust S to as to maximise score (minimise quasi-energy)

Score function
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Score function
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,• how do amino acids
• suit structure ?
• suit each other ?

• scorestruct might have
• backbone preferences (no proline in helices, ..)
• solvation (penalise hydrophobic at surface)

• scorepair
• are residues too big (clashing)
• are there holes ? charges near each other ?

• messy functions
• lots of parameters

i
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Searching
• systematic search – how long ?
• search space for Nres = 20 ×20 ×… = 20Nres

• search space complex
• every time you change a residue, affects all neighbours

• effects neighbours of neighbours

• brute force not a good idea
• two methods here

1. Monte Carlo / simulated annealing
2. Pruning / dead end elimination
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Monte Carlo
• more formally next semester
• first the problem

The sequence optimisation problem

• discrete
• local minima / correlations in surface
• high dimensional
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dimensions and correlations
• a 1D problem

x

cost(x)

• local minima
• minimum of x depends on y
• cannot optimize x and y

independently
• what are correlations in this problem ?

x

y
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Discrete vs continuous problems
• for a continuous function use gradients

• to optimise
• to recognise minima / maxima
• continuous functions

• step in one direction is good
• try another in same direction

• with a discrete function
• no gradients
• order of labels arbitrary

• ACDE or ECAD
• discrete

• step in one direction may be no predictor of best 
direction
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what do we want ?
• from step to step (sequence to sequence)

• be prepared to move in any direction
• if the system improves, try not to throw away good 

properties
• must be willing to go uphill sometimes

• philosophy
• take a random move
• if it improves system

• keep it
• if cost becomes worse

• sometimes keep it
• sometime reject
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Acceptance /rejection
• for convenience, write cost(Sn)   - neglect the coordinates R
Sign convention
• system (sequence) at step n is Sn
• after a random step, cost changes from cost(Sn) to cost(Sn+1)
• Δc= cost(Sn+1)- cost(Sn)
• our sign convention: if Δc < 0, system is better

When to accept ?
• if Δc is a bit < 0 accept
• if Δc is a bit > 0, maybe OK
• if Δc >> 0, do not accept
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Formal acceptance rule
• −Δc < 0,   e−Δc is between 0..1
• − Δc ≈ 0 then e−Δc ≈ 1       as Δc → ∞ then e−Δc →0
• formalise this rule

set up S=S0 and cost(S0)

while (not finished)
Strial = random step from S
Δc = cost(Strial)-cost(S)

if (Δc < 0)                      /* accept */ 
S= Strial

else
r = rand (0..1)
if (e-Δc ≥ r)

S= Strial
• vorsicht ! not the final method
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why we need temperature
• As described

• system will run around
• try lots of new configurations
• sometimes accept bad moves
• always take good moves
• may never find best solution

• imagine you are at a favourable state
• most changes are uphill (unfavourable)
• many of the smaller ones will be accepted

• if we were to find the best sequence, the system 
would move away from it

• how to fix ?
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why we need temperature
• Initial sequence is not so good

• let the system change a lot and explore new possibilities
• after some searching, make the system less likely to go uphill
• introduce the concept of temperature T
• initially high T means you can go uphill (like a high energy 

state)
• as you cool the system down, it tends to find lowest energy 

state
• change acceptance criterion to 

• as T
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• put this into previous description
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why we need temperature
set up S=S0 and cost(S0)set T=T0
while (not finished)

Strial = random step from S

T = εT                      /* ε bit smaller than 1 */ 
Δc = cost(Strial) - cost(S)
if (Δc < 0)

S= Strial
else

r = rand (0..1)
if ( exp(-Δc/T)≥ r)

S= Strial

• name of this procedure
• "simulated annealing"
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Final Monte Carlo / annealing
• History  applications

• discrete problems – travelling salesman, circuit layout
• deterministic ? No
• convergence ? Unknown
• practical issues

• what is a random step ?
• change one amino acid ? change interacting pairs ?

• easy to program
• lots of trial and error
• statistical properties next semester

• can we reduce the search space ?
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Pruning
• Are there elements of sequence which are impossible ?

• at position 35, no chance of Y, W, I, L, …
• can one find impossible combinations

• reduce the search space so it can be searched systematically
(brute force)

• … dead end elimination method
• use an energy-like nomenclature
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Nomenclature
• we are not dealing with

• free energy G or F or potential energy U or E
• but let us pretend

• score is E
• rule : more negative E , better the system
• structure is fixed so neglect R / r terms
• define a function si(a) as the residue type at site i

• can take on 20 values of "a"    why ?
foreach (a in A, C, D, E.., W, Y)

evaluate energy corresponding to a

• our energies ?
• two parts – pairwise and residue with backbone
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Nomenclature
• E is (quasi-energy) of whole system

• label E1 as the terms that depend on residue + fixed 
environment

• E2 as the energy terms that depend on pairs
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• if we are interested in site i and being in state a
what do we have to look at ?
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Nomenclature and rules
• there are 20 (Ntype) residues
• which fits best to the fixed environment ?
• implies testing each of the Ntype for a
• what is the best energy type a at site i could have, interacting 

with one site j ?
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• for each a – can work out what is the best score it could yield
• loop over b
• within loop over j

• what is the best energy that type a at i could have considering 
all neighbours ?
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Dead-end elimination method
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• worst energy that type c at i could have considering all 
neighbours ?

• when can one eliminate (rule out) residue type a at site i ?

• for any residues a, c
• if the best energy for a is worse than the worst for c

• a cannot be part of the optimal solution … if
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Dead-end elimination method
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• using this approach
for (i = 0; i <  Nres ; i++)

foreach a in Ntype
calculate worst score for a
calculate best score for a

foreach a in Ntype
foreach b in Ntype

if best(a) > worst (b)
remove a from candidates

• how strong is this condition ?
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DEE condition
• much of the time

• cannot really rule out type a
• example ?

• initial
• 2×1027

• final
• searchable in 90 cpu hr

• deterministic
Dahiyat, B.I, Mayo, S.L. (1997), Science 278, 82-87

Combining ideas

• use DEE to get a list of candidate residues at each position
• search remaining space with Monte Carlo / simulated annealing
• not deterministic
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Success

New sequence
• about 20 % similar to start
• not related to any known protein (still)

• Structure solved by NMR

• Problem solved ?
• maybe not

designed QQYTAKIKGRTFRNEKELRDFIEKFKGR

native KPFQCRICMRNFSRSDHLTTHIRTHTGE

Dahiyat, B.I, Mayo, S.L. (1997), Science 278, 82-87

• Method
• Dead end elimination + systematic search
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Success
Mission
• sketch a new protein topology
• build a sequence to fit it

Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364-1368.05.01.2011 [ 27 ]Andrew Torda



Success
Methods
• pure Monte Carlo
Result
• apparently new sequence

Structure
• as predicted
• solved by X-ray

• phasing story

• Problem solved
• unclear (how many failures ?)

Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364-1368.05.01.2011 [ 28 ]Andrew Torda



Methods so far

Monte Carlo Dead-end 
elimination

guaranteed 
global 
optimum

no does not try

deterministic no yes
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Only one answer ?

May not matter 
• consider real proteins – compare human, goat, …

• all stable – all slightly different
• implication

• there may be many solutions which are equally good

• How good are our energy functions ?

unsuitability / 
instability /… goat

kangaroo
pig

professor

sequences
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Determinism and energy

• I have a perfect score / energy function
unsuitability / 
instability /…

sequences

unsuitability / 
instability /…

sequences

• I have errors / approximations
• best answer could be any one
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Problems – stability / energy
• energy functions
• what do we mean by energy ?
• example – two charges

• example – two argon atoms

• make energy better ?
• replace every amino acid by a larger one

(more contacts – more negative energy)
• silly – proteins are not full of large amino acids

• what determines stability ?

Dr
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( )6612124)( −− −= rrrU σσε
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Problems – stability / energy

• stability – does a molecule prefer to be folded or unfolded ?
• what is unfolded ?     or         ?

• my energy function tells me to change "X" to "Y"
• it affects both the good          and bad
• has it affected the energy difference ?

• no guarantee

• current score functions ?
• some pure potential energy
• very difficult to estimate ΔG
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Problems - sidechains
• side chain positions

• can I ever calculate the energy if I change X to Y ?
• insert a phe into this structure
• what interactions does it have ?

• how to cope with side chain positions in a practical way
• optimise location of sidechains
• use average
• explicit rotamers 05.01.2011 [ 34 ]Andrew Torda



Sidechains – optimise at each step
• I start with known protein

• change A →F
• use an energy minimiser / optimiser to

find best position for F

• sensible ?
• we have a gigantic search space
• explicit optimisation of one side chain would be expensive

• silly?
• I change A→F, but the rest of the side chains may move

• bad idea
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Sidechains – use averaging
• ignore the problem of sidechain geometry

• at room temperature, side chains move
• small (middle of protein) to big (surface)

• we cannot expect Å accuracy anyway

• rather fast

• what if we want to worry about atoms ?
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Sidechains – use rotamers

• sidechains can move anywhere but
• there are preferences

in diagram – three more likely states
A

B
C

D F

E

χ1

count

• how many times is the 
first angle (χ1) seen at 
each angle ?

• how to use this ?
• look for most 

popular angles
(60, 180, 300)

χ1

χ2
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• For this example
• do not have 1 cys residue
• replace with cys1, cys2, cys3
• treat all amino acids similarly

• more complicated because of more angles
• consequence

• Ntype of amino acids >> 20
• requires that you have a pre-built rotamer library

• fits to
• Monte Carlo (random moves between residues or rotamers)
• dead end elimination (will remove impossible rotamers)

Sidechains – use rotamers

histogram from Dunbrack's group http://dunbrack.fccc.edu/bbdep/figures/cys0_x1.gif

χ1

count
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Problems – viability
• Designed sequences must

• fold
• be expressed + produced
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Summary
• Experimental approaches
• Nature of the problem  - discrete (not continuous)
• Optimisation methods (MC, DEE)

• Score functions
• not energy, not free energy, not potential energy

• Success / state of the art
• not many examples from literature
• failure rate ?
• cost

• Definitely not a routine method
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