Classifying and comparing proteins

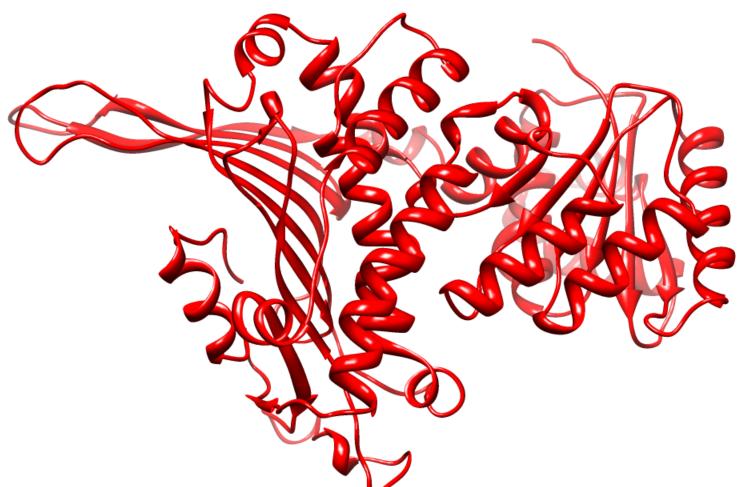
Andrew Torda, Wintersemester 2010 / 2011, GST...

Plan

- why ?
- classifications
 - hierarchical vs pragmatic / empirical
 - continuous or clustered?
- sequence similarity vs structure similarity
- example classifications
- comparison measures

Why?

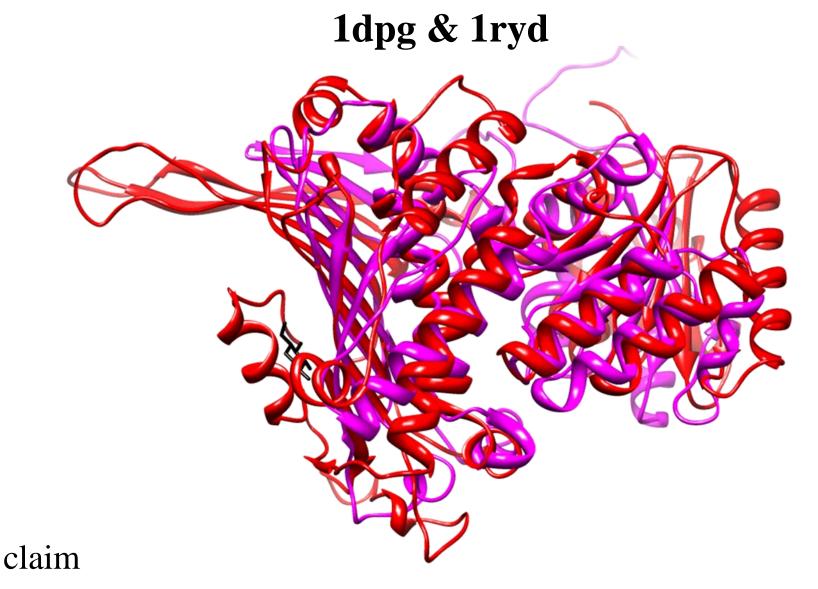
- Background details later
 - evolutionarily close proteins similar structures
 - evolutionarily remote proteins may have simlar structures
- function prediction / annotation
- interpretation
- structure prediction
 - examples


Function prediction (annotation)

- most common question
 - gene (sequence) associated with disease no idea of chemistry
 - look for related sequences with known (annotated) function
- no answer?
 - structure available? yes ..
 - look for related structures in protein data bank with known function

Interpretation of structures

- you know what your protein does
- you cannot crystallise it with reactants (substrates)
- you cannot see which residues are essential to function
- find a related structure which crystallises with its (maybe different) reactants
- example
 - 1dpg oxidoreductase
 - acts on sugar, no idea where sugar binds

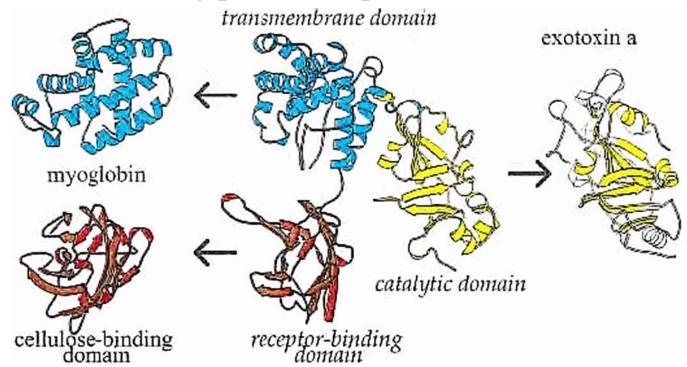

where does sugar bind in 1dpg?

- 1dpg glucose-6-phosphate d.h. (one chain)
- no idea where sugar binds / which residues are important
- well studied never crystallised with sugar

- 1ryd glucose fructose oxidoreductase
 - special managed to crystallise with sugar
- transfer the reactant location...

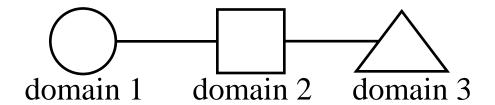
• from structural similarity one knows which residues in 1dpg are important

Classification and structure prediction


- how many possible protein structures are there ?
 - astronomical
- how many protein structures actually occur on earth?
 - 2×10^3 to 5×10^3
- de novo / ab initio prediction?
 - search in giant space
- find most likely protein fold?
 - search amongst 10³ to 10⁴ structures
 - find the class of your protein crude structure prediction

Sequence vs structure similarity

- Protein Databank $\approx 7.0 \times 10^4$
- 90 % sequence similarity $\approx 2.5 \times 10^4$ classes
- different shapes 2 to 5×10^3
- fewer classes when structure-based
- structure-based classes are larger
- speculations and explanations later
- now
 - domains
 - sequence space
 - hierarchical and non-hierarchical


Domains

- Why mention?
 - many groups work on domains, not whole proteins
- Reasons
 - many structures are labelled "a domain of protein X"
 - evolution convincing picture (diptheria toxin)

Domains – evolutionary viewpoint

• idealised view..

- claim / belief
 - evolution goes faster by mixing / swapping domains between proteins
- do we all agree on domains?
 - 3 viewpoints

Domains in Biochemistry (view 1)

History / biochemistry / no structures

- invented story
- we have a big protein
 - catalyses $A \rightarrow B$
 - C regulates it
- cleave protein (break with enzyme) to two parts
 - 1 still converts $A \rightarrow B$
 - 2 binds C
 - interpretation
 - catalytic domain
 - C binding domain
- more generally
 - different pieces of protein, responsible for different functions

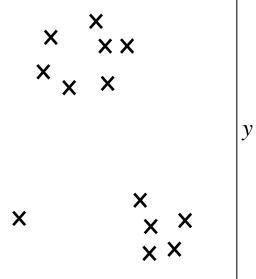
Sequence level domains (view 2)

Align a group of sequences

- appears to have 3 domains
- no reference to structures or function

Domains in Structures (view 3)

- Many structures solved look like...
- histocompatibility module (1iak)
 - 3 domains
- are they always so clear ?
- porphobilinogen deaminase (1gtk)

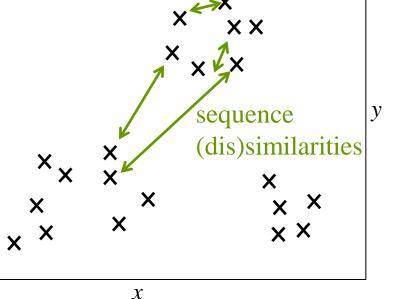


Domains for these lectures

- usually structure based
 - compact units
 - stable in solution (usually)
- generally ignore questions of domains being swapped
- can we really expect to classify proteins?

Protein classes / families

- questions
 - what do they mean?
 - do you expect them?
- meaning...
- each cross is a protein
 - what are x and y?
 - two ways to answer
 - generic *n*-dimensional distances
 - example from sequence space



X

 $\boldsymbol{\mathcal{X}}$

Spaces for proteins

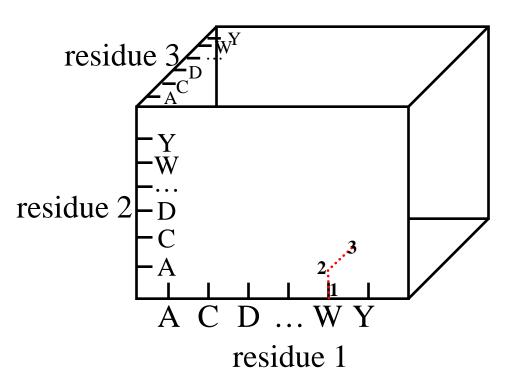
- Sequence example
 - we can compare any two sequences
 - measure (dis)similarity
 - matches, similarity score, ...
- I have a matrix of n(n-1) distances
 - how would I go to x, y?
 - how many dimensions?

- If I have similarities between objects
 - there is some implied (n-1) dimensional space
- a different way to have a sequence space

Sequence Space

- convenient way to explain ideas of sequence similarity
- conventional spaces
 - 1D (x), 2D (x, y), 3D (x, y, z), 4D (x, y, z, w), ...
 - let us estimate how big a space or problem is
 - how many variables do I have ? (a, b, c, ...)
 - how many values can each variable have ?
 - a 3 values, b 4 values, c 5
 - number of points in space = $3 \times 4 \times 5$
- protein sequences
 - each position can have 1 of 20 values
 - total number of sequences = $20 \times 20 \times ... = 20^{Nres}$
 - like a space of N_{res} dimensions

Representing a Sequence

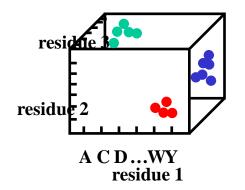

• protein sequence and structural coordinates

	1	2	3	4	5	6	7	• • •	N_{res}
X	1.2	2.3	• • •						10.3
y	2.4	3.5	• • •						11.1
Z	1.7	2.9	• • •						15.5
seq	W	A	С	A	A	• • •			D

- consider the first three residues
 - WAC (for pictures only)

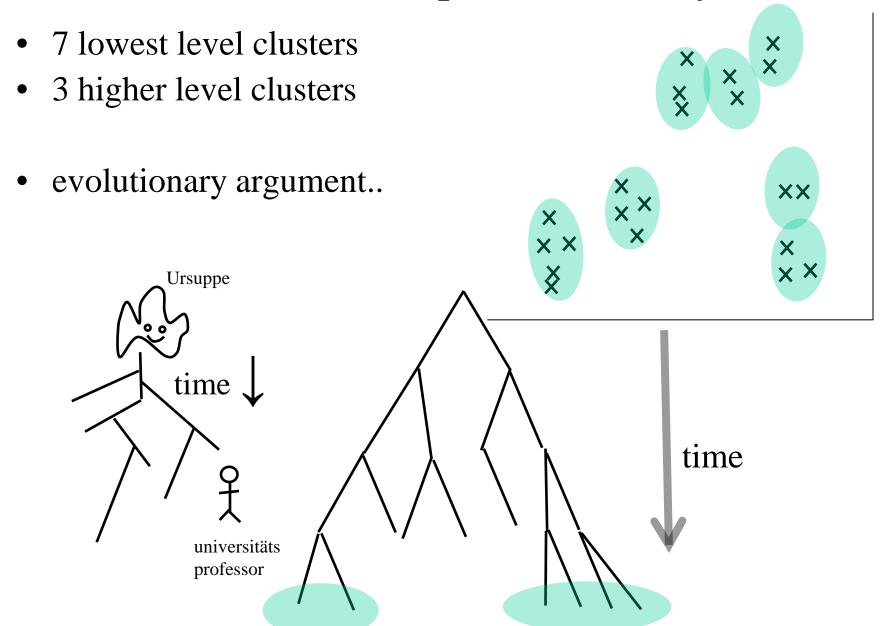
Finding a Sequence in This Space

- real diagram is a box of N_{res} dimensions
 - this one 3 dimensions

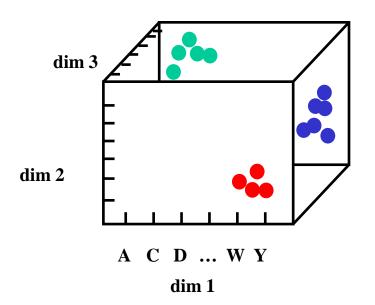


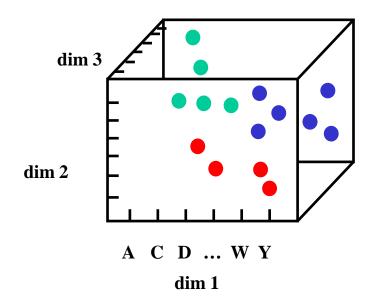
	1	2	3	4	5	6	7	N _{res}
X	1.2	2.3	•••					10.3
y	2.4	3.5	•••					11.1
Z	1.7	2.9	•••					15.5
seq	W	A	C	A	A	•••		D

• looking for sequences...


Families in Sequence Space

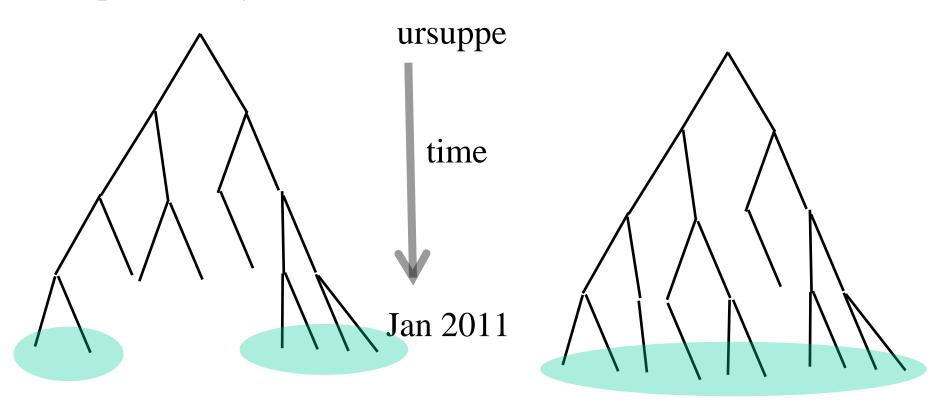
- Similar sequences should land near each other
- How realistic?
 - picture is a simplification
 - only works for $N_{seq1} = N_{seq2}$
 - very useful
 - distances between sequences


Will return next semester


Should we expect a hierarchy?

Do we expect protein families?

- No real answer
- we have an idea of spaces sequence or structure based
- how are proteins distributed?



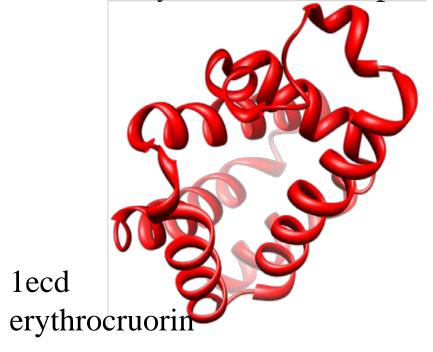
should you expect clusters?

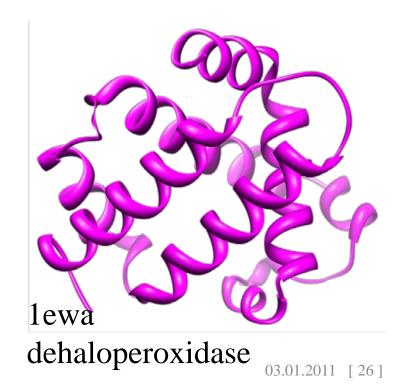
Evolution and phylogeny

shape / density of tree of life

clear families

no families


Questions for fun


- Do we expect hierarchy?
 - some people do
- Do we expect clusters
 - some people ..

Structure vs Sequence similarities

- more different than you might expect
- similar sequences
 - have not evolved for too long
 - expect similar structures

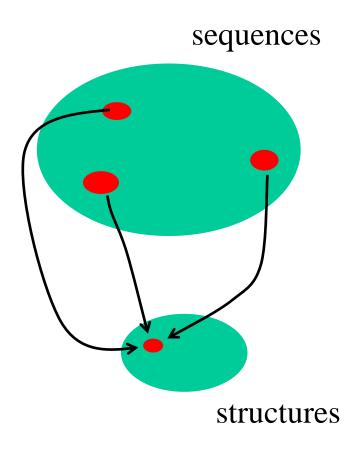
other way round? Examples



very different sequences

- 1ecd & 1ewa
 - 17% sequence identity (very low)
 - structures almost identical
- is this an exception?
 - 100's of examples
 - totally normal
 - play with our server

http://public.zbh.uni-hamburg.de/salami/


Example family

- example, neighbours of 1cun chain A
 - look at sequence identity (% id)
 - alignment length (lali = number of residues)
 - root mean square diff in Å

```
No Chain
           %id lali rmsd Description
              213 0.0 ALPHA SPECTRIN
           100
 1 1cunA
        24 111 1.6 ALPHA-ACTININ 2
 2 1hciA
        12 106 4.4 RIBOSOME RECYCLING FACTOR
 3 1ek8A
        9 91 2.5 ADP-RIBOSYLATION FACTOR BINDING PROTEIN GGA1
 4 loxzA
 5 1eh1A
        8 102 4.6 RIBOSOME RECYCLING FACTOR
        5 105 3.1 HEAT SHOCK COGNATE 71 KDA
 6 1hx1B
 7 1dd5A
        8 103 4.7 RIBOSOME RECYCLING FACTOR
            9 98 2.6 SYNTAXIN 6
8 1lvfA
        9 99 2.3 STAT3B
 9 1bg1A
        5 98 3.0 CLATHRIN ASSEMBLY PROTEIN SHORT FORM
10 1hg5A
11 1hs7A
            14 92 2.5 SYNTAXIN VAM3
        10 101 2.7 SYNTAXIN BINDING PROTEIN 1
12 1dn1B
               108 4.6 RIBOSOME RECYCLING FACTOR
13 1ge9A
14 lfewA
               125 3.5
                        SECOND MITOCHONDRIA-DERIVED ACTIVATOR OF
15 lqsdA
            4 90 2.4
                        BETA-TUBULIN BINDING POST-CHAPERONIN COFACTOR
            6 95 2.8
16 1e2aA
                        ENZYME IIA
            7 95
17 1i1iP
                   3.3
                        NEUROLYSIN
18 1fioA
            8 100
                   2.6
                        SSO1 PROTEIN
19 1m62A
            8 81
                    2.8
                        BAG-FAMILY MOLECULAR CHAPERONE REGULATOR-4
                                                                 03.01.2011 [ 28 ]
               147 25.8
20 1k4tA
                        DNA TOPOISOMERASE I
```

Structure vs Sequence

- there are 1000's of such families
- summarise
 - similar sequences
 - similar structures
 - very different sequences
 - similar or different structures
- why ?

Structures < Sequences... Why?

Evolution

- many small changes
- if structure changes, function breaks, you die
- sequences change as much as possible within this constraint

chemistry

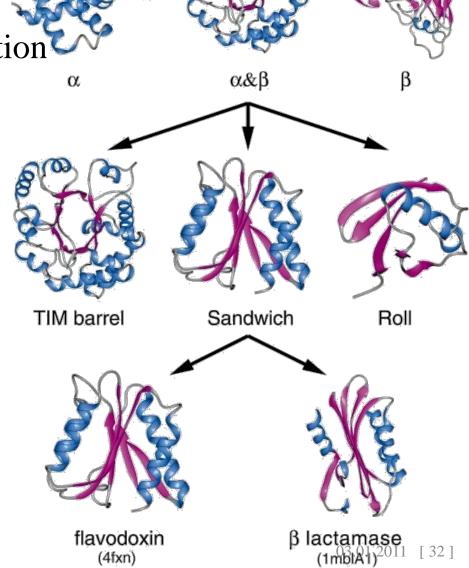
• sequence does determine structure, many sequences could fit structure (more next semester)

Surprising?

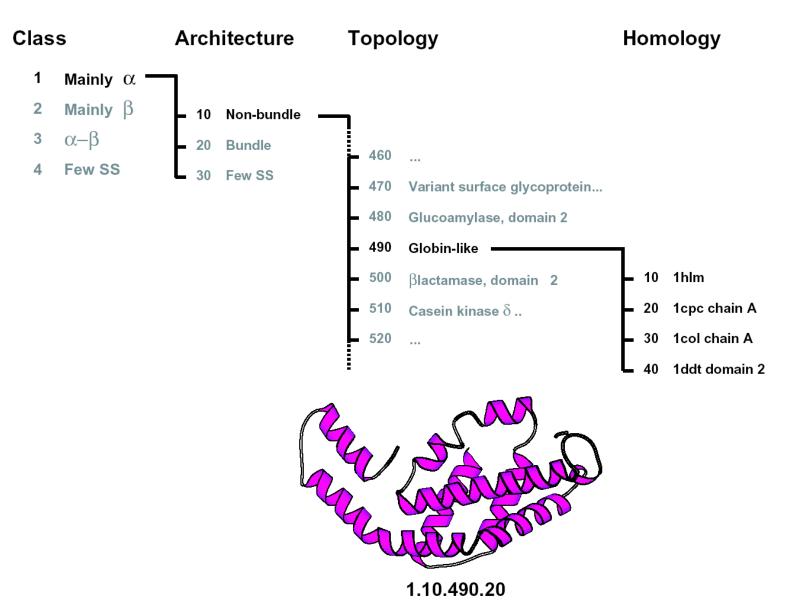
- consider near universal proteins
 - 100's millions years evolution, function largely preserved

Classifying by sequence

- forget hierarchy (for now)
- tools
 - any alignment program (blast, fasta, clustal, ...)
- method
 - survey all proteins in the protein databank


• collect all pairs > x %

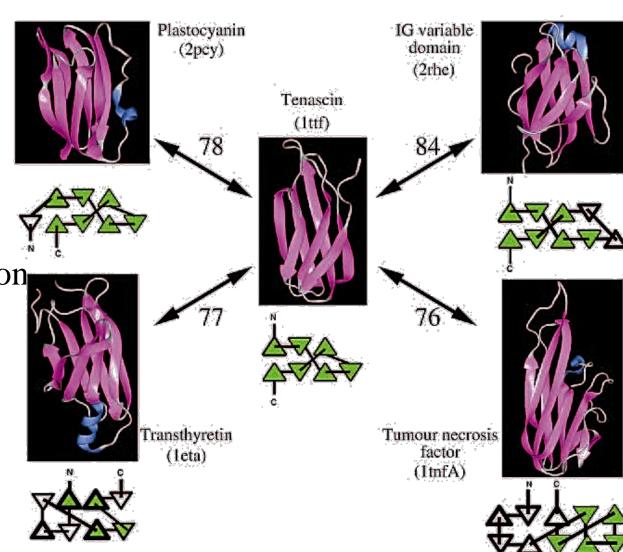
similarity	num clusters				
90 %	25 304				
70%	22 028				
50%	18 711				


- result (jan 2011)
- how many structure classes ? 2 to 5×10^3 ?
- some sequence classes are not really different from each other
- now.. examples of structure based classifications

Imposing a Hierarchy on Proteins

- parts may correspond to evolution
- top level ?
- How useful and applicable ?
 - examples

Example from "CATH"


Evolution and Classification

• can we interpret structures in evolutionary terms?

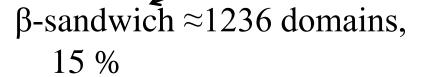
sometimes

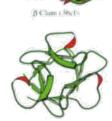
 for more remote proteins – not really possible

 given a classification some empiricism

Lots of families

- \approx 226 domains,
- 3 % surveyed structures




β Roll (i ph.)

• < 0.01 %

B Distorted Sandwich (Nobje

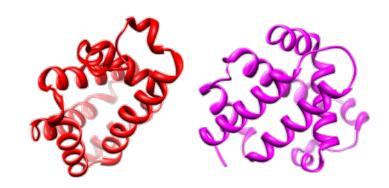
β Trefoil (Life A)

\$4-Properlos (Tho)

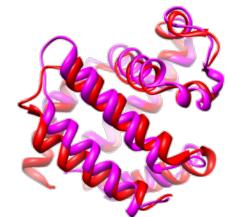
William .

Interesting...

 some families very popular, some not


03.01.2011

Why are some families populated more than others?


- more next semester
- are some structures more stable ?
- are some older in evolutionary terms?
- can some "accommodate" more sequences / tolerate more mutations
- reflection of physics ?
- biases ? PDB has
 - mainly soluble, globular proteins which crystallised
 - very few membrane-bound proteins

Forget Evolution

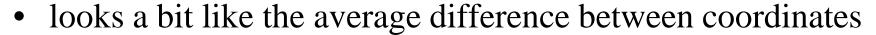
- Is the hierarchy really justified?
 - at low levels maybe
 - at higher levels ? $(\alpha, \alpha/\beta, ..)$

- better to discover relationships automatically
- Imagine I can compare arbitrary proteins
- have some measure of similarity
- use this to classify

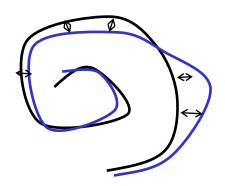
- Huge problem
 - proteins are different sizes and shapes
 - how to compare ?

Summary

- Classification would be useful
- Given a distance (dissimilarity) one can invent a space for sequences or structures
- not known if it
 - exists
 - is hierarchical
- sequence vs structure similarity
 - different sequences can fold to same structure
- imposing a hierarchy on protein structures very ad hoc
- one can forget hierarchy simply use a clustering method
 - one will need a measure of similarities
 - big topic...


Protein Structure Comparison / Numerical

Most common protein structural question


- how much has my protein moved over a simulation?
- how similar are these NMR models for a structure?
- how close is my model to the correct answer?
- more difficult
 - how similar is rat to human haemoglobin?
- two cases
 - 1. same protein, same number of atoms
 - 2. different proteins
- first
 - measures for easy cases

Numerical Comparison of Structures - Easy

- what units would we like?
 - scale of similarity (0 to 1.0)?
 - comparison of angles
 - distance / Å? most common / easy to interpret

• consider analogy with standard deviation / variance

From Standard Deviation to RMSD

Analogy with comparing a set of numbers

• get average (mean)
$$\overline{x} = N^{-1} \sum_{i=1}^{N} x_i$$

- variance σ^2 and standard deviation, σ
- apply this to coordinates of r and r'

$$RMSD = \left(N^{-1}\sum_{i=1}^{N}\left|\vec{r}_{i}-\vec{r}_{i}'\right|^{2}\right)^{\frac{1}{2}}$$

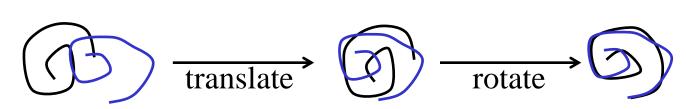
$$\sigma^2 = N^{-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

$$\sigma = \left(N^{-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \right)^{\frac{1}{2}}$$

Vital

- formula above, names below
- rms = rmsd = RMSD = root mean square difference Applying this...

Calculating rmsd


$$RMSD = \left(N^{-1}\sum_{i=1}^{N} |\vec{r}_i - \vec{r}_i|^2\right)^{1/2}$$

- start at one end
- difference between pairs of atoms

$$|\vec{r}_i - \vec{r}_i'|^2 = (x_i - x_i')^2 + (y_i - y_i')^2 + (z_i - z_i')^2$$

- huge problem...
 - coordinates are normally...
- what to do?

Translation and Rotation

translation

- c.o.m. = centre of mass
- subtract difference vector

$$\vec{r}^{c.o.m} = \left(\sum_{i=1}^{N} m_i\right)^{-1} \sum_{i=1}^{N} \vec{r}_i m_i$$

rotation

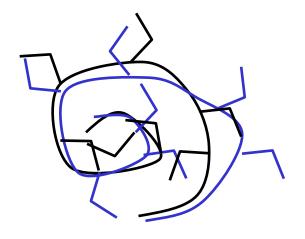
$$\vec{r}_{diff} = \vec{r}^{c.o.m.} - \vec{r}^{\prime c.o.m.}$$

- messier..
- find rotation matrix to minimise

$$RMSD = \left(N^{-1}\sum_{i=1}^{N}\left|\vec{r}_{i}-\vec{r}_{i}'\right|^{2}\right)^{1/2}$$

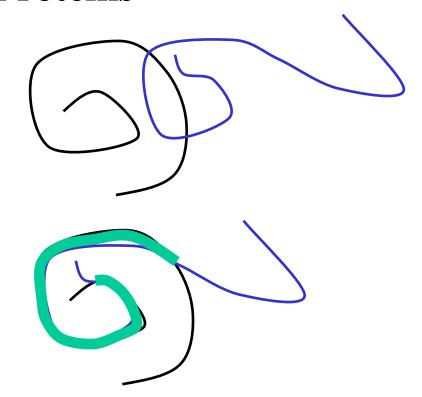
- summary
 - translate
 - rotate
 - apply formula
- still not finished

Which Atoms?


What tells me the shape of a protein?

backbone trace

What happens if you include all atoms?


- bigger rmsd
- normal choice
 - Cα
- sometimes
 - N, C^{α} , C
- all atoms?
 - when a model is very close

Still not finished with simple rmsd

Parts Of Proteins

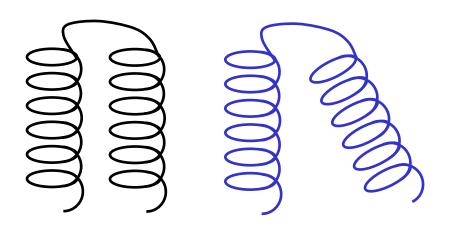
- two models of a molecule
 - mostly very similar
 - is *rmsd* a good measure?
- identify similar parts
 (method used in chimera)

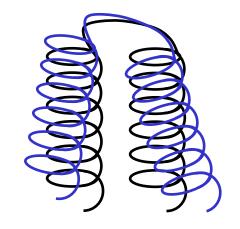
define

```
superimpose ({r},{r'}, {d}) {
        translate ({r,},{r'}, {d})
        rotate ({r},,{r'}, {d})
}
where {d} is some subset of sites
```

Selection of Interesting Atoms

• define a threshold like thresh = 2 Å ${d}={|r_i-r'_i|}$ i=1..N sort {d} diff= rmsd $(\{r_i\},\{r_i'\})$ while (diff > thresh) { remove largest d superimpose $(\{r\},\{r'\},\{d\})$ recalculate distances $diff = rmsd (\{r\}, \{r'\}, \{d\})$ if (diff < thresh)</pre> return {d}, diff else return broken


• result? a subset of interesting atoms


Subsets of Atoms

- Originally, quantify structural differences as Å rmsd
- Alternative quantity implied
 - number of residues used for *rmsd* below threshold
- implicit rule
 - as number of atoms \downarrow calculated $rmsd \downarrow$

Why Not Use rmsd

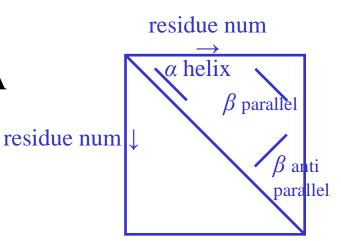
- helices identical, fold identical
 - rmsd?

 superposition requires rotation, affects all atoms

- big *rmsd*, but structure has hardly changed
- do not see that helices are identical
- solutions
 - use angles (other problems)
 - distance matrices

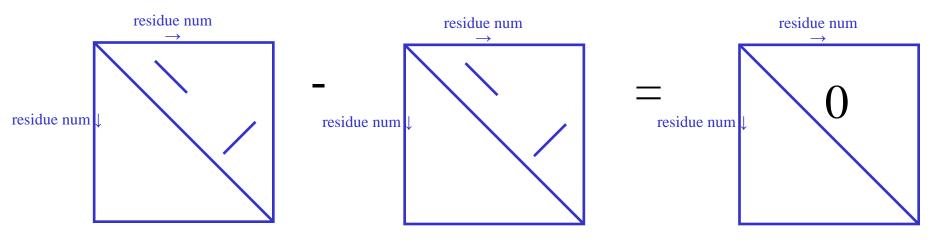
Distance Matrices With Numbers

Another characteristic of structures

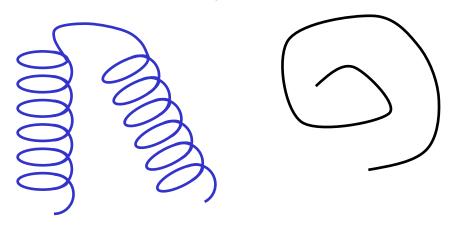

- C^{α} distance matrices
- simply measure the distance between C^{α} atoms

	1	2	3	4	5	6	7	• • •		N
1	O	3.8	6	7	• • •					
2		0	3.8	5	• • •					
3			0	3.8						
4				0	3.8					
5					0	3.8				
6						0	3.8			
7							0	3.8		
• • •								0	3.8	
									0	3.8
N										0

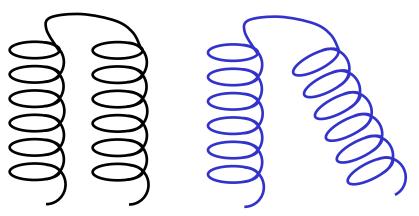
Distance Matrix for Recognising Structure

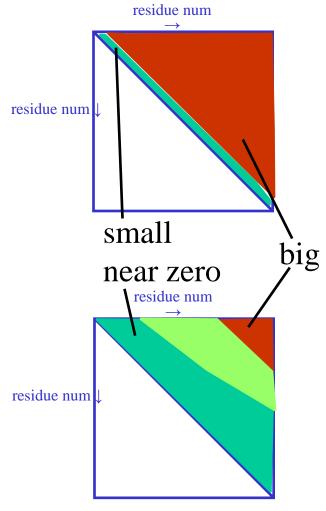

One way to summarise a structure

- plot C^{α} distance matrix, points below 4 Å
- can make α -helices and β -sheets clear


Distance matrix for comparing structures

- take two similar proteins
 - look at the difference of distance matrices




Comparing Distance Matrices

consider two very different structures

two related structures

• pictures are better than any single measure, but...

From Distance Matrices to Single Number

For lots of comparisons, single number is more convenient

- root mean square (rms) difference of distance matrices
 - define distance between C^{α} atoms i and j

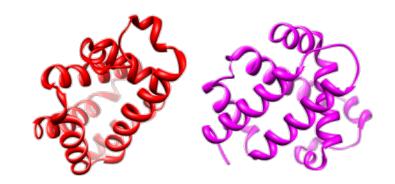
$$d_{ij} = \left| \vec{r}_i - \vec{r}_j \right|$$

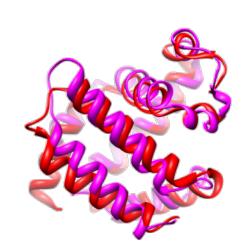
• rms of distance matrices measure is

$$rms = \left(\frac{2}{N(N-1)} \sum_{i=1}^{N} \sum_{j>i}^{N} (d'_{ij} - d_{ij})^{2}\right)^{\frac{1}{2}}$$

- just like all other *rms* quantities
 - normalised over top half of matrix

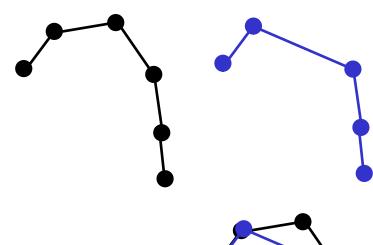
Summary – Comparing Models / Structures

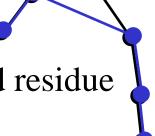

- rmsd
 - most popular
 - requires superposition (translate + rotate)
 - can be fooled by "hinge" movements
 - size dependent (not discussed here)
- to look at the shape of a molecule use C^{α} or backbone atoms
- numbers in Å have a physical meaning
- to look for the common core of a structure, find a subset of backbone
- other measures may be better than *rmsd*
- weakness of all measures
 - a single number can never capture all information


Comparing Proteins – different sizes

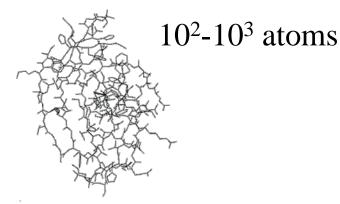
- compare red and blue proteins
- if we know which residues match
 - easy (use any *rms* formula)
- which residues match?
 - sequence alignment?

protein	1	A	C	D	W	Y	T	R	P	K	L	н	G	F	D	S	A	C	V	N
protein	2	A	U	D	W	W	T		P	K	V	н	G	Y	D	ន	A	U	V	N


- green residues backbone atoms
- pink residues ignore
- is this useful for similar proteins? very (rat vs human haemoglobin)
- for very different proteins? no

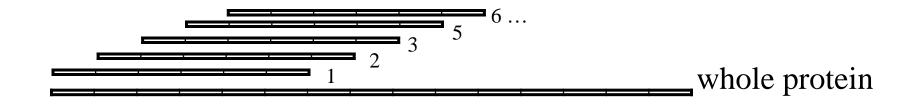


Comparing Very Different Proteins


- sequence alignment vs identity
 - as identity ↓, errors ↑
- consequence
 - methods needed
 - operate on C^{α}
 - do not require sequence
- how difficult?
 - superposition requires recognising the deleted residue
 - can we use standard dynamic programming?
 - no
 - gap/insertion at any position, any length
 - combinatorial explosion

Strategies For Comparing Different Structures 1. use secondary structure

- Combinatorial explosion is the problem
 - reduce size of problem
 - use elements of secondary structure



about 8 units

- define secondary structure
- search for superposition
- for each residue
 - find closest C^{α} in partner structure
 - use the set of matching residues to calculate *rmsd*

2. Peptide fragment strategy

- more general version of idea on previous page
- basis of most popular methods
- Ingredients
 - break protein into overlapping fragments (length 6 or 8)
 - protein is no longer a string of residues nor a whole structure

• each fragment is a little distance matrix

Fragment Based Comparison

any two distance matrices can be compared

• two proteins length *N* and *M* can now be compared...

		1	2	3	4	5	• • •		<i>N</i> -7
	1	1.3	1.0	2.0	0.9	• • •			
protein 2 fragments↓	2	2.7	2.3	0.5	• • •				
	3	5.5	4.4	• • •					
	4	0.1	0.5	0.3	3.3	4.2			
	5	1.9	4.4	5.5	0.3	3.3	• • •		
	6	4.4	1.6	1.7	5.0	2.3	• • •		
	• • •	4.1	3.1	3.3	4.4	0.2	3.3	• • •	
	M-7	5.2	1.1	0.1	5.5	4.4	0.1	3.3	0.1

protein 1 fragments →

- imagine *rmsd*
- this is now like a sequence comparison problem

Finding Equivalent Fragments

find optimal path through matrix

classic dynamic programming method like sequence

comparison

<u> 1 (111)</u>							7011	
	1	2	3	4	5	•		N-7
1	1.3	1.0	2.0	0.9	• • •			
2	2.7	2.3	0.5	• • •				
3	5.5	4.4	• • •					
4	0.4	0.5	0.3	3.3	4.2	• • •		
5	1.9	4.4	5.5	5.3	3.3	• • •		
6	4.4	1.6	1.7	5.0	23	• • •		
•••	4.1	3.1	3.3	4.4	0.2	3.3	• • •	
N-7	5.2	1.1	0.1	5.5	4.4	0:1	3.3	0.1

- like sequence comparison
 - find optimal path through matrix
 - classic dynamic programming method (N & W, S & W)
 - uses gap penalties

Comparing Different Size Protein Structures

- Break protein into overlapping fragments
- fragments can be compared to each other via distance matrices
- align like sequences
- from aligned fragments, get list of aligned residues
- using aligned residues, calculate *rmsd*, *rms* of overall distance matrices

How Important Are These Similarities?

- survey 1000 proteins
- find structurally similar pairs
- plot sequence identity

70 % Sequence Identity 20 200 500 600 100 300 400 700 Length of Polypeptide Chain

may not be found by sequence methods

Summary of All Protein Comparisons

Classification of proteins

- could be done by sequence, better by structure
- Structure comparison
- for one protein
 - selection of atoms
- for different proteins
 - requires list of matching atoms
- for similar proteins
 - can use pairs from sequence alignment
- for often dissimilar proteins
 - pure structure based method

Summary of everything

- classification is appealing
- very different answers using sequence or structure
- even if we believe in evolution
 - complete hierarchical scheme may be artificial