Comparing protein structures

- Fun problem no textbook
- NOT sequence comparison
- why does it matter ?

1ecd, 1mbd no significant sequence identi

Structure versus sequence comparisons

- Protein Databank $\approx 6.8 \times 10^4$
- 90 % sequence similarity $\approx 1.7 \times 10^4$
- different shapes 2 to 5×10^3
- implications for structure prediction ?
 - how many possible structures can we think of ?
 - exponential
 - how big is the real search space ?
 - really 10^3 to 10^4

Thresholds of sequence similarity

Take a set of pairs of proteins

- find those which are not structurally similar
- look at sequence similarity 100

- 50 residues
 - > 30 % seq
- 150 residues
 - > 20 %

- rule:
 - sequence similarity (length dependent) very good indicator of structural similarity

Rost, B., Protein Eng. 1999, 12:85-94, "Twilight zone of protein sequence alignments"

Example family

- example, neighbours of 1cun chain A
 - look at sequence identity (%id)
 - alignment length (lali = number of residues)
 - root mean square diff in Å

No	Chain	%id	lali	rmsd	Description
1	lcunA	100	213	0.0	ALPHA SPECTRIN
2	1hciA	24	111	1.6	ALPHA-ACTININ 2
3	lek8A	12	106	4.4	RIBOSOME RECYCLING FACTOR
4	loxzA	9	91	2.5	ADP-RIBOSYLATION FACTOR BINDING PROTEIN GGA1
5	leh1A	8	102	4.6	RIBOSOME RECYCLING FACTOR
6	1hx1B	5	105	3.1	HEAT SHOCK COGNATE 71 KDA
7	1dd5A	8	103	4.7	RIBOSOME RECYCLING FACTOR
8	1lvfA	9	98	2.6	SYNTAXIN 6
9	1bg1A	9	99	2.3	STAT3B
10	1hg5A	5	98	3.0	CLATHRIN ASSEMBLY PROTEIN SHORT FORM
11	1hs7A	14	92	2.5	SYNTAXIN VAM3
12	1dn1B	10	101	2.7	SYNTAXIN BINDING PROTEIN 1
13	1ge9A	6	108	4.6	RIBOSOME RECYCLING FACTOR
14	lfewA	8	125	3.5	SECOND MITOCHONDRIA-DERIVED ACTIVATOR OF
15	lqsdA	4	90	2.4	BETA-TUBULIN BINDING POST-CHAPERONIN COFACTOR
16	le2aA	6	95	2.8	ENZYME IIA
17	1i1iP	7	95	3.3	NEUROLYSIN
18	1fioA	8	100	2.6	SSO1 PROTEIN
19	1m62A	8	81	2.8	BAG-FAMILY MOLECULAR CHAPERONE REGULATOR-4
20	1k4tA	6	147	25.8	DNA T(http://ekhidna.biocenter.helsinki.fi/dali/start 28/09/2010

[4]

Sequence vs structure space

- there are 1000's of such families
- summarise
 - similar sequences
 - similar structures
 - very different sequences
 - similar or different structures
- why ?

structures

Why?

- typical low sequence identity, similar structures
- physical reasons
 - compactness, stability
 - advantages of H-bonded conformations
- history / evolution
 - evidence
 - theoretical geometric constructions
 - chemical construction of artificial protein(s)
 - imagine all proteins evolve from some original molecule ...

why can sequence change ?

change here residue changes ? OK structure changes ? Bad

• a view of molecular evolution...

2j9m, 2cdk + aminopyridine

Evolution

mutate continuously

- mutations which are not lethal
 - may be passed on (fixed)
- if structure changes
 - protein probably will not function
 - not passed on

Result

- evolution will find many sequences
 - compatible with structure
 - compatible with function
- how else would we see this ?

Meaning of structural similarity

1cbl & 1eca (haemoglobin & erythrocruorin) 14 % sequence id

1 fyv & 1udx, TLR receptor and nucleotide binder, 9 % sequence id

Quantifying similarity

• quantifying this ?

very

- assume we have an alignment of residues (later)
 - for each C^{α} in protein 1, corresponding C^{α} protein 2
- simplest / most common measure is *rmsd* (root mean square deviation) of C^{α} coordinates..

rmsd

• normal formula for standard deviation $\sigma_x = \left(\frac{1}{N}\sum_{i=1}^N (x_i - \overline{x})^2\right)^{\frac{1}{2}}$

$$r_{rmsd} = \left(\frac{1}{N_{res}} \sum_{i=1}^{N_{res}} |\vec{r}_i^{\,a} - \vec{r}_i^{\,b}|^2\right)^{\frac{1}{2}}$$

- everyone remembers Å (0.1 nm)
- many alternatives
 - *rmsd* of internal distance matrices
 - "gdt" fraction of atoms superimposible below thresholds

finding matching atoms

• two conformations of one protein

rotation and translation

• analytical method

finding aligned atoms

- NP complete !
- how difficult ?
 - superposition requires recognising the deleted residue
 - can we use standard dynamic programming ?
 - no no simple score for corresponding locations
 - gap/insertion at any position, any length
 - combinatorial explosion
- strategies

how to align protein structures

- NP complete, dozens of approaches
 - all can be made to fail
- seeded methods yuk not today
- cheat and use sequence
- overall superposition
- fragment based

cheating and using sequence

- example implementation in "chimera"
- Assumption
 - sequence identity is weak, but
 - I believe two proteins are related
 - maybe the sequence alignment will be roughly correct
- can be used to get corresponding atoms
- from N residues, get N_{common} shared
- problem
 - we know identity is weak alignment will be bad
 - especially around loops, insertions, deletions

overall superposition

- philosophy
 - centre of mass is easy (average of C^{α} coordinates)
 - translation seems easy
 - rotation ? bit harder
- friendly function to optimise ?
 - 6 degrees of freedom

Overall superposition (broken)

• the centre of mass is not relevant

a fragment based strategy

- want..
 - find common regions
 - some way of comparing each C^α in prot 1 with C^α in prot 2
 - some kind of structural label

fragments to similarity matrix

characterising the local environment distance matrices

- secondary structure ?
 - not very specific, thresholds
- distance matrices..
 - given a C^{α} what is the pattern of neighbours ?

distance matrix comparison

- given two matrices
 - each characterises the environment of an atom
 - compare with *rmsd* like measure

$$d_{rmsd} = \left(\frac{2}{N_{res}(N_{res}-1)}\sum_{j>i}^{N_{res}}\sum_{i=1}^{N_{res}-1} (d_{ij}^{a} - d_{ij}^{b})^{2}\right)^{\frac{1}{2}}$$

protein 2

- now make a similarity matrix
 - elements are matrix similarities

3

2

..

aligning protein structures

• optimal path through matrix is pure structure based alignment

In practice

- dali ekhidna.biocenter.helsinki.fi/dali_server/
 - very good results, not fast, lots of answers precalculated
- wurst public.zbh.uni-hamburg.de/salami/
 - very fast, very similar results to dali
 - used for most of pictures here

In practice

- only relevant when structures are known
 - 6.8×10^4 versus 10^7 sequences
- will detect more remote similarities
- structural genomics / function prediction
- applications
 - searching PDB for similarities
 - phylogeny based on structure ...
- Coffee