Einführung in die Chemie / Lebenswissenschaften

Andrew Torda

Sekretärin

- Annette Schade 42838 7330 schade@zbh.uni-hamburg.de
- 1st floor

This course

• me \times 6 + Dirk Wilrodt \times 3

Sprache

• English / Deutsch

Diese Folien

• immer in "stine"

Administration

- Format each day
 - 9:15 10:45 lectures × 2
 - 11:00 -12:00 Übung
 - Zeit und Pause verhandelbar
 - Übung
 - not like real chemistry (no lab coats)

Textbook

- meine Folien
 - "Chemie die Zentrale Wissenschaft" Brown, T.L., LeMay, H.E., Bursten, B.E.
 - expensive
 - in the library: www.sub.uni-hamburg.de
- ebenso gut..
 - "Chemie: Das Basiswissen der Chemie" Mortimer, C.E. & Müller, U. Thieme, 2003
 besuchen Sie unsere Bibliothek Webseite für Volltextzugang

Quick survey

- who has book or can get it soon ?
- who is here ?

What do I like ?

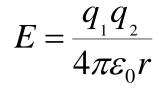
- proteins, RNA, evolution
- numerical simulations
- prediction
- analysis
 - methods for recognising properties
- design

Mission

• enough chemistry to do our MSc course

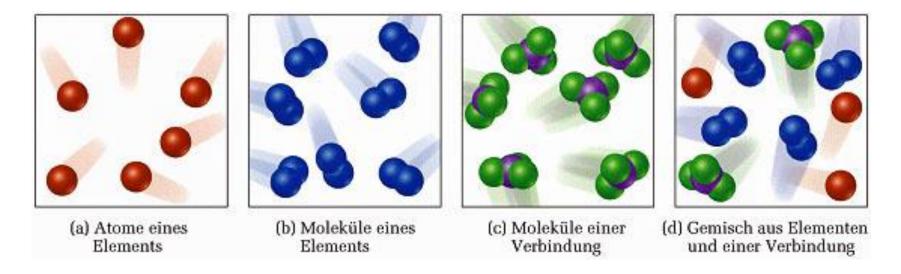
Content

- basic rules
 - atoms, bonds
 - geometry
 - reactions, kinetics, equilibria
- little
 - metals, phosphorus, heavier elements
 - not much on gases or solids
- no
 - nuclear chemistry, metals


Kapitel		
1	intro and units	
2	atoms, molecules	bonds
3	stoichiometrie	
4	reactions in water	
5	thermochemistry	
6	electronic structure	skip most of Bohr atom
7	periodic table	briefly, sizes of atoms, ionization
8	chemical bonding	octet rule
9	structure, bond types	
10	gases	no
11	intermolecular forces	
12	modern products	no
13	solution properties	no
14	kinetics	
15	chemical equilibria	
16	acid / base	
	wahrscheinlich Ende	
19	thermodynamics	
25	organic chemistry	introduction

Style

- Sometimes brief mention
 - make noise when concepts unclear
- Sometimes borders with school chemistry
 - make noise when too easy
- Definitions
 - more early on
 - easy definitions necessary to explain later ones
- Technical words
 - German or English ? Usually both
 - keine Sprachprüfung


Rules

- SI units
- significant digits
 - if you have 2 significant digits in a problem do not quote 9.838375
- symbols for constants use standard ones
 - *k*, *h*, *R*, ... in context, do not need explanation
- symbols some are very common
 - charge is always q, mass is always m
- symbols are italics (*a*, *b*, *c*)
- units are roman (m, kg, s)
- follow conventions from good text books

Gemische, Elemente

- Elements (Elemente) one kind of atom
- Compounds (Verbindungen) some atoms bound together, H₂O, sugar, NaCl
- O₂ is not a compound, but who cares ?

• Examples of these four

Elemente & Verbindungen

- 6 elements = more than 90 % of earth crust
- numerous compounds
 - think of oxygen compounds CO_2 , H_2O , ...

Verbindungen & Gemische

- Pure sugar or salt is a pure compound
 - ratio of elements is always the same
- Mixtures: concrete, coffee, washing powder
 - ratio of elements varies a bit
 - more than one type of molecule

Aluminium

7.5%

(a) Erdkruste

Andere

9,2%

Silizium 25,7%

Eisen

4.7%

Sauerstoff 49.5%

Calcium 3.4%

Units

- nearly only SI units
- base units

masse	mass	kilogram	kg
länge	length	meter	m
zeit	time	second	S
temperatur	temperature	kelvin	Κ
stoffmenge	quantity of	mole	mol
	substance		

- + prefixes k, M, G, m, μ , p
- not °Kelvin, not "sec"

Derived units

force newton N m kg s⁻² energy, work, heat joule J N m pressure pascal Pa N m⁻² \dots volts V, Ω , Hz, \dots all are derived units

illegal

• invent your own symbols

Exceptions

- few
 - Angstrom Å
 - atomic mass unit u $(1.7 \times 10^{-27} \text{ kg})$

To remember

- units for
 - volume, density, energy, pressure
- dimension analysis
 - MLT (most things)
 - Θ temperature
 - Q charge

- is this high school ?
- Θ is big theta

Atomic structure

Atoms

- protons, neutrons, electrons
- mass exception to my claim about SI units
 - protons and neutrons mass 1 u / amu/ame = 1.7×10^{-27} kg
 - electrons ? who cares
- charge another exception
 - elementary charge $e = 1.6 \times 10^{-19}$ C or As (Ampere is the SI unit)

• more high school ?

Atomic number / mass

- atomic number
 - how many electrons does an atom have
 - how many protons
 - how to find the element in periodic table
 - C is 6, O is 8
- atomic mass
 - C is 12, O is 16

						5	Met	alle										
	1A 1					2	Met	alloid	e									8A 18
1	1 H	2A 2					Nic	htmeta	alle				3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	${5 m B} \over 5$	${}^{6\mathrm{B}}_{6}$	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		

- what is most useful ?
 - usually mass

Atomic mass

Will re-appear next semester - isotopes

- always written as ^{yy}X like
- rules not C^{13}
- unless stated, work with common isotope

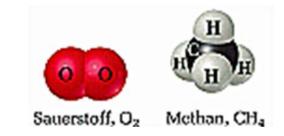
$^{12}\mathrm{C}$	normal
¹³ C	NMR
$^{14}\mathrm{C}$	radioactive label
$^{1}\mathrm{H}$	normal
$^{2}\mathrm{H}$	deuterium

- where does mass matter ?
 - calculation of quantities in reactions
- most elements have single stable isotope which is most common (¹H, ¹⁶O, ¹²C,)
 - exception Cl, mass 35.5

Periodic system

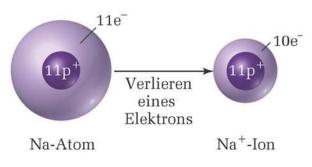
- limited to the relevant bits for our course
 - who will we meet most ?

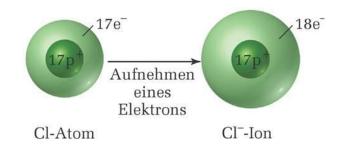
1A																	8A
Η																	He
	2A											3A	4A	5A	6A	7A	
Li	Be											В	С	Ν	0	F	Ne
								8B									
Na	Mg											Al	Si	Р	S	Cl	Ar
		3B	4B	5B	6B	7B	/ 8	9	$10 \setminus$	1B	2B	_					
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Ро	At	Rn


• example [Na⁺] and [Cl⁻] > 100 mM

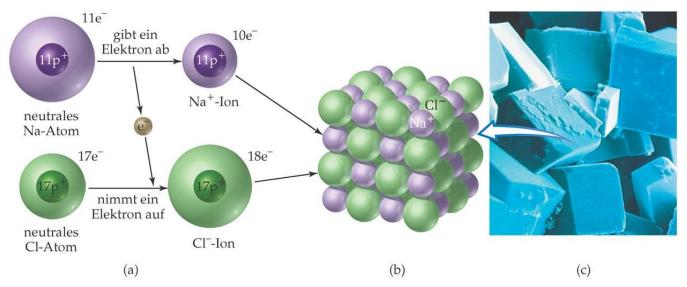
Bonds - covalent

- look at O₂
- neither O is charged
 - as if the electrons are shared
- similar for CH₄, CO, CO₂
- dissolve O₂ in water, mostly
 H O and O
 - H_2O and O_2



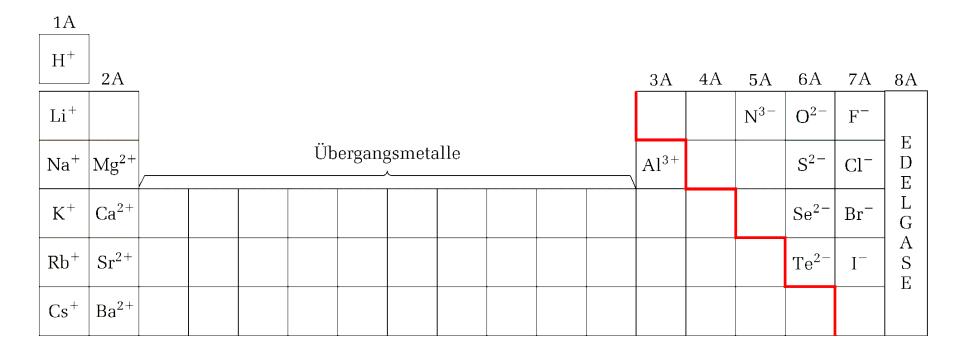

Kohlenstoffmonoxid, CO Kohlenstoffdioxid, CO2

- best example NaCl
- pure Na atoms ? metal Na is fun
- Na is happy to lose an electron $Na \rightarrow Na^+ + e^-$


- pure Cl ? does not really exist (Cl₂)
- happy to gain an electron $Cl_2 + 2e^- \rightarrow 2 Cl^-$

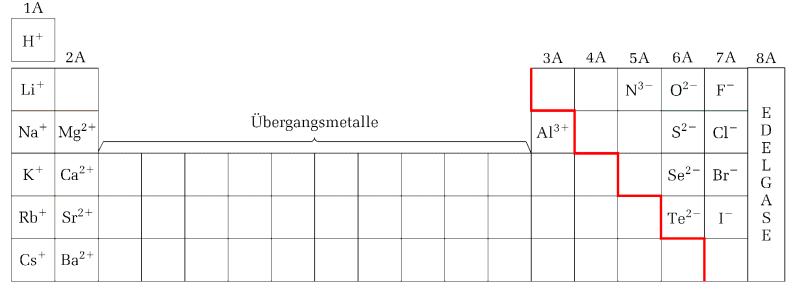
Ionic bonds

- table salt is formally NaCl
 - structure is more Na⁺ Cl⁻
- strong electrostatic attraction


- dissolve in water gives
 - H₂O and Cl⁻ and Na⁺ more correctly
 - $(H_2O)_nCl^-$ and $(H_2O)_nNa^+$

Covalent versus ionic

	covalent	ionic
	molekulare Verbindungen	Ionische Verbindungen
	non-metals	metal + non metal
if soluble – dissolves as	AB	A ⁺ and B ⁻
	electrons shared	electron(s) given from A to B


Ions

• Some elements are very friendly and predictable

- For an element, is it energetically OK to
 - gain / lose 1, 2 or 3 electrons ?
- Many elements rarely form ionic compounds, C, P, ..
- Many form more than one kind of ion, Fe²⁺, Fe³⁺

Ionic compounds

- What can one predict from the table ?
 - ionic compound must be neutral
 - NaCl, CaCl₂, what would Al and O be ?

Ionic compounds

- many anions are not ions from atoms
 - OH⁻, SO₄²⁻, CO₃²⁻, PO₄³⁻
 - compound ions stable group of atoms with some extra electrons
 - more later

Chap 3 Stöchiometrie / Stoichiometry

Stöchiometrie / Stoichiometry

- formula, chemical equation
- burn H_2 and O_2 , to make water H_2O
 - do not say $H_2 + O_2 \rightarrow H_2O$
 - H on left = 2 & on right = 2
 - O on left = 2 & on right = 1
 - $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$
 - $2 H_2 + O_2 \rightarrow 2 H_2O$

OK

best (convention)

who cares ?

- essential for working out how much of something is used up (sugar, O₂,..)
- how much O₂ will I need to burn some sugar ?
- how much CO₂ will be made from kg of sugar / protein?
- how much product is made (sugar, CO_2 , H_2O)

stoichiometry rules

- amount of each element is same on left & right hand sides
- not allowed to change composition of a compound
 - CO₂ never becomes CO₃
- prefer to have whole integers
 - 2 $H_2 + O_2 \rightarrow 2 H_2O$ better than $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

examples

in	out
O ₂ , NO	NO ₂
CH ₄ , O ₂	CO_2, H_2O
Al, HCl	
ethylene & O ₂	

Rules for examples

- Breakdown reactions
 - products are the most stable forms
 - N_2 , CO_2 , ... not exotic compounds
- burning
 - complete oxidation assumed, CO_2 , H_2O
 - example burnt in air..
 - C₃H₈
 - methanol
 - glucose ($C_6H_{12}O_6$)

Molecular weight

- M_r or m.w. or FG in textbook
- atomic mass unit "u"
- "ame" in book, "amu" in English books
- sometimes Dalton
- weight of a hydrogen atom $(1/12 \text{ of } {}^{12}\text{C} \text{ atom})$
 - we will forget this in a moment and work with kg
- summed mass of component atoms in correct ratio
- M_r of $H_2NO_3 = 2 \times 1 u + 14 u + 3 \times 16 u = 64 u$
- more examples Al(OH₃)₃ or fraction of mass of elements in C₁₂, H₂₂, O₁₁

$$\frac{M_r}{Al} = 27$$
Ca 40

04/10/2011 [29]

Avagadro's number

- important $N_A = 6.0 \times 10^{23}$
- N_A = how many atoms are in 12g of ¹²C
- N_A of something is 1 mole (mol)
- 1 mol of $O_2 = 6.0 \times 10^{23}$ molecules of O_2 (1.2 ×10²⁴ O atoms)
- 1 mol of O = 6.0×10^{23} atoms of O
- 1 mol of Cl⁻ ions is 6.0×10^{23} atoms
- 1 mol of \in is much money
- why ? 1 mol of a chemical is convenient

molar masses

- 1 atom ¹²C is M_r =12, 1 mol ¹²C is 12g, molar mass is 12g
- M_r of Cl is 35.5, 1 mol Cl is 35.5 g, molar mass is 35.5 g
- 1 mol of NO_3^- , NaCl, ...
- Normal example questions
- How many moles in
 - 500g of Na_2CO_3 ?
 - 500g of NaHCO₃ ?
- formula of vitamin C
 - 40.92 %C, 4.58 %H, 54.5 % O
- my sample from oil has 3 C: 4 H and mol wt of 121
 - what is formula ?

More example calculations

- an organic compound made of C, H and O is oxidised
 - 204 g of the compound at start
 - 528 g CO_2 and 252 g H_2O
 - what is the formula of the compound ?

• How many g water do we get from burning 1g glucose $(C_6H_{12}O_6)$? No calculator necessary

Limited Reactions

- what happens with
 - 26 g O_2 and 4 g of H_2 ?
 - 32 g O_2 and 2 g of H_2 ?

Limited Reactions

- how many g O_2 do I need to burn
 - 10g of sugar $C_{12}H_{24}O_{12}$?
 - 5g of ethanol ?
- $2 \operatorname{Na_3PO_4}(\operatorname{aq})$ an $\operatorname{Ba}(\operatorname{NO_3})_2(\operatorname{aq})$ gives $\operatorname{Ba_3}(\operatorname{PO_4})_2(\operatorname{s})$ & $\operatorname{NaNO_3}(\operatorname{aq})$
- balance the reaction
- how many g of barium phosphate do I get from
 - 330g of sodium posphate +
 - 800g of barium nitrate ?

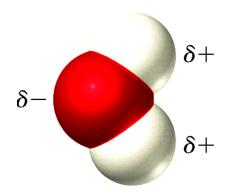
			M_r	
		Ba	137	
		Na	23	
	aqueous	Ο	16	
(s)	solid	Ν	14	
(1)	liquid	Ρ	32	
(g)	gas		04/10/2011 [33

Chap 4 Reactions in water

Reactions in Water (chap 4)

- Reactions in general
 - solid phase ? bit special
 - solid + liquid common
 - gas phase ? common, but not so in biochemistry
 - in water (aqueous) most important for biochemistry
- Topics
 - precipitation reactions
 - acid-base
 - redox (simple)
 - properties of ions in solution

nomenclature


- what is the state of something ?
 - 1 liquid
 - g gas
 - s solid
 - aq aqueous
- language independent
- We usually say
 - $X(aq) + Y(aq) \rightarrow A(aq) + B(s)$
- most of our chemistry is (aq)

Reactions in water

- Most important
 - typical of reactions in cell

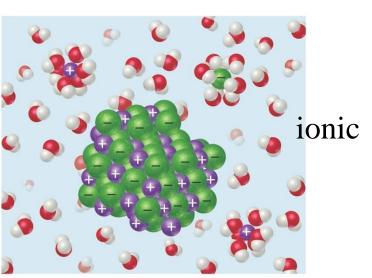
Ionic solutions

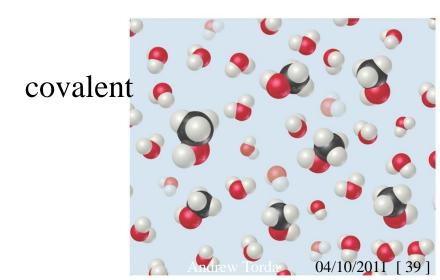
- solutions are ionic / not ionic
- water is neutral but polar
- think of NaCl really Na⁺ and Cl⁻
- throw in water
 - who would an Na⁺ like to be with ?
 - competition of Cl⁻ and H_2O
 - there is a lot more water than Cl⁻
 - how much more next slide

Typical numbers for a solution

• 5.85 g table salt in 11 water – some spoons – tastes salty

•
$$5.85g = \left(\frac{5.85}{23+35.5}\right) \text{mol} = 0.1 \text{ mol}$$


• 11 water = 1kg water is
$$\frac{1000}{18}$$
 g = 55.5 mol


- what is ratio of H_2O to Na^+ or Cl^- ?
 - 555 : 1
- why is this a simplification ?
 - 11 water will be a bit less volume of salt

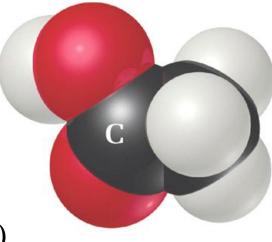
non-ionic solutions

when do we have an ionic solution ?

- most times when a compound is easy to ionise / happy to form $^{+/-}$
 - K, Na and other first and second column metals
 - Cl, F and other halogens
- when do we have a non-ionic solution
- when the bonds are covalent
 - sugars, alcohols

In between

partially ionic / partially non-ionic


- many examples typical of weak acids acetic acid (vinegar)
- $CH_3COOH(aq) \Rightarrow CH_3COO^-(aq) + H^+(aq)$
- but there is an equilibrium
- there are
 - whole CH₃COOH molecules
 - CH_3COO^- ions + H⁺ ions

other possibility – something is not soluble – precipitate

- Mg(NO₃)₂ is not very soluble
- $Mg(OH)_2(s) + H_2O(1) \rightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$

when would we see this ?

• $Mg(NO_3)_2(aq) + 2 NaOH(aq) \rightarrow$ $Mg(OH)_2(s) + 2NaNO_3(aq)$

Solubility, dissociation

Where does this happen?

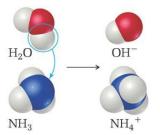
- partially ionised forms are important
 - PO₄³⁻, CH₃COO⁻ and lots of organic acids are only partially ionised
 - cells are full of these
- insoluble compounds ?
 - not floating around in cells
 - may be part of structures cell walls, bones, membranes

Solubility rules

- guidelines
- nomenclature [A] is the concentration of A, mol 1⁻¹
- for compounds AB there is a threshold [A] [B] ionic product. AB will form precipitate if [A][B] is above this threshold
- either A or B may be a complex ion $(PO_4^{3-}, NO_3^{-}, CH_3COO^{-}, ..)$

Equations with ions

- Dissolve an ionic compound like NaCl or KI
- there is hardly any of the compound
 - most is Na⁺, K⁺, Cl⁻, I⁻
- You can write an equation
 - $Pb(NO_3)_2(aq) + 2 KI (aq) \rightarrow PbI_2(s) + 2 KNO_3 (aq)$
- maybe more sensible to write
 - $Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 K^+(aq) + 2 I^{-}(aq) \rightarrow PbI_2(s) + 2 NO_3^{-}(aq) + 2 K^+(aq)$
- this is true, but some ions on both sides net reaction
 - $Pb^{2+}(aq) + 2 I^{-}(aq) \rightarrow PbI_2(s)$
- the others were "spectator ions"
- if everyone is a spectator ion, there is no reaction
 - $Na^+ + Cl^- + K^+ + NO_3^- \Rightarrow Na^+ + Cl^- + K^+ + NO_3^-$


Acid –base reactions

- What is H ? proton + electron
- H⁺ is just a proton
- acid is proton donor, can be weak or strong

$$\begin{array}{ll} HNO_{3}\left(aq\right) & \rightarrow H^{+}\left(aq\right) + NO_{3}(aq) & \text{strong} \\ HCl\left(aq\right) & \rightarrow H^{+}\left(aq\right) + Cl^{-}(aq) \end{array}$$

 $\begin{array}{ll} CH_{3}COOH (aq) &\rightleftharpoons H^{+} (aq) + CH_{3}COO^{-} (aq) & \text{weak} \\ NaHCO_{3} (aq) &\rightleftharpoons H^{+} (aq) + NaCO_{3}^{-} (aq) \end{array}$

• Base = something that will accept a proton

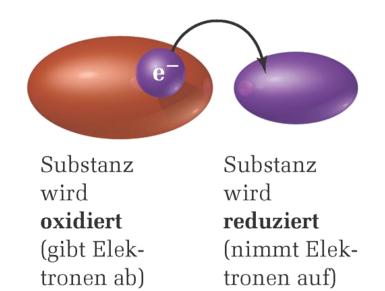
- $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
- $NaCH_3COO + H_2O \rightleftharpoons CH_3COOH + OH^- + Na^+$

- NaOH \rightarrow Na⁺ + OH⁻ then
- $OH^- + H$ -anything $\rightarrow H_2O + anything^-$
- hydroxide groups like to take protons from other things
- what happens when one mixes an acid and a base ?

Neutralization

- first what is a salt ?
 - ionic compound, NaCl, CaCO₃
- mix acid + base (metal hydroxide) example
 - $HCl + NaOH \rightarrow NaCl + H_2O$
 - $2CH_3COOH + Ca(OH)_2 \rightarrow Ca(CH_3COO)_2 + 2H_2O$
 - $H_2SO_4 + 2 \text{ KOH} \rightarrow 2\text{K }SO_4 + 2 \text{ }H_2O$
- theme = salt + water
- where have ions gone ?
 - NaOH + HCl \rightarrow NaCl + H₂O is really
 - Na⁺ + OH⁻ + H⁺ + Cl⁻ \rightarrow Na⁺ + Cl⁻ + H₂O
 - $\bullet = salt + water$
 - $y BH + M (OH)_x \rightarrow ? H_2O + ? B M$

Last words on acids and bases


- acid anything that can donate a proton
- base anything that can accept a proton
- bases can be things like
 - NaCH₃COO since $CH_3COO^- + H^+ \rightleftharpoons CH_3COOH$
- ammonia is a base $NH_3 + H^+ \rightleftharpoons NH_4^+$
- something may be an acid or base HCO_3^-
 - as a base..
- $H^+(aq) + HCO_3^-(aq) \rightleftharpoons H_2CO_3(aq) \rightleftharpoons H_2O(1) + CO_2(g)$
 - as an acid
- NaOH (aq)+ HCO_3^{-} (aq) really
 - $Na^+ + OH^-(aq) + HCO_3^-(aq) \rightarrow H_2O + Na^+ + CO_3^{2-}$
 - $OH^{-}(aq) + HCO_{3}^{-}(aq) \rightarrow H_{2}O(1) + CO_{3}^{2-}(aq)$

Oxidation / Reduction

- So far: H⁺ reactions (exchange of protons)
- oxidation does not necessarily involve O₂
- reduction = giving electrons
 - if X is reduced it gains an electron
- oxidation = having electron taken away

 $Ca(s) + 2H^{+} (aq) \rightarrow Ca^{2+} + H_{2} (g)$

• solid calcium is "dissolved" in acid

Oxidation / Reduction

- $Ca(s) + 2H^{+}(aq) \rightarrow Ca^{2+} + H_{2}(g)$
- H₂ gas released
- Ca has become charged
- reaction is not complete we have neglected the anions
 - Cl^- or NO_3^- or SO_4^- or ...(why not OH^- ?)
- Why is it called oxidation ? Historic
 - Example 2 Ca (s) + $O_2(g) \rightarrow 2$ CaO
- Nomenclature
 - something is reduced by a reductant
 - A reduces B, B is reduced by A
 - A is oxidised by B, B is an oxidant
- more nomenclature oxidation numbers

Substanz	1
wird	
oxidiert	
(gibt Elek-	
tronen ab)	

Oxidation numbers / states

- mixture of book-keeping and real world
- simple example
 - how do you meet Na ? As Na or Na⁺
 - in one case there is no charge (oxidation state 0)
 - in other case, there is a charge of +1
 - oxidation states 0 or 1
 - Solid sodium oxidation state 0
 - table salt Na is +1, Cl is -1
- Labelling to tell us how likely reduction/oxidation is
- Oxidation states are associated with atoms/ions not complex ions (CO₃²⁻, NO₃⁻, ..)

Oxidation numbers / states - Rules

- single atom ion oxidation number is the charge
 - Ca²⁺, H⁺, Cl⁻,
- In elemental form, oxidation state is 0
 - Na, P₄, O₂, H₂, Ar
- in a neutral compound oxidation numbers sum to 0
- in a complex ion, sum of oxidation numbers is charge of ion Some rules have exceptions..
- Oxygen is usually -2 in compounds (H₂O, CO₃²⁻, ..)
- Metals usually go +1, +2, .. (they happily lose electrons)
- H is usually +1 (important exceptions)
- Halogens are usually -1, F is almost always -1

Example oxidation states

- To discuss each element in
 - KOH
 - CH₄
 - CCl_4
 - HCO₃⁻
 - CH₃COONa not really a good question CC bond is so covalent
- Problem oxidation states are best for purely ionic systems
- Strategy for answers start with known reliable cases
 - O^{2–}, halide[–],

Why do some things oxidise / reduce ?

- Detour acids and bases
 - strong acid = something that will happily give up an H^+
 - weak acid not so enthusiastic
 - strong base = energy becomes much better (more negative) when it meets a proton
- Oxidation / reduction
 - you can rip an electron off almost anything
 - with some atoms you only have to ask gently
 - some reach a good energy state when they lose/gain 1 or 2 electrons
 - examples

easy / hard to oxidize

• how hard is it to take an electron off some atom ?

lithium natrium (sodium)	\rightarrow Li+ \rightarrow Na+		•
 zinc	\rightarrow Zn ²⁺	+ 2e ⁻	
 wasserstoff (hydrogen) 	\rightarrow H+	+ e ⁻	hard to lose e ⁻
gold	$\rightarrow Au^{3+}$	+ 3e ⁻	

- many more in text book
- how to remember ?
 - think of gold does not oxidize
 - think of sodium rarely seen as metal, fizzes in water

Concentrations

- you have to mix some chemicals for a reaction
- you are working with solutions
- you want to know how many atoms / molecules you are dealing with – how many atoms are there in my solution?
- only one answer / one common unit
- molarity = molarität = moles l^{-1}
- usage: x M solution = x moles per liter (often mM)
- lots of examples
 - 6.7g of a sugar $C_6H_{12}O_6$ in 100 ml water
 - 117 g table salt in 1/5 l water

more molarity examples

- how many g of NaHSO₄ do we need for 400 ml of 0.5M?
- How many g of O_2 do I need to burn
 - 100g ethanol (CH_3CH_2OH) ?
 - 100g methanol (CH₃OH) ?
- K_3PO_4 & AgNO₃ are soluble
- Ag_3PO_4 is not
- I have 100mM K₃PO₄ What volume do I need to get 85g of silver phosphate from a bucket of AgNO₃?

- H 1 O 12
- C 12 K 39 N 14 Ag 108

04/10/2011 [57]

Summary of solutions

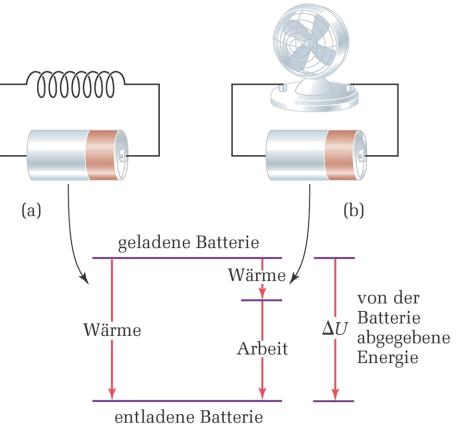
- strong and weak electrolytes
- reactions that give solid (Fällungsreaktionen) or gas
- strong and weak acids and bases transfer of protons
- oxidation / reduction transfer of electrons
- molar calculations

chap 5 - Thermochemistry

chap 5 - Thermochemistry

- Later (summer semester) everything is based on energies
- kinetic versus potential
- kinetic $E_{kin} = \frac{1}{2} mv^2$ applies from atoms to trucks
- dimensions?
- units ? kg m² s⁻² / joules
- potential energy
 - E_{not} in many forms
 - elastic, lennard-jones, bonds, ...

 $E_{el} = \frac{q_1 q_2}{4\pi \varepsilon_0 r_{12}}$


 $E_{grav} = \frac{Gm_1m_2}{r_{12}}$ • everything tries to go to lower (more negative) energy

Energy

- Energy put into a system is work *W*
- If you like forces $W = \text{force} \cdot \text{distance}$
 - check the dimensions
- who cares about work ?
 - usually we do not worry about absolute energy
 - ΔE is more important
 - usually we talk about the internal energy U
 - ΔU is most important
- Heat is like work (gives energy or heat is given out)
 - how can the energy of a system change ?
 - $\Delta U = Q + W$ Q is heat
 - *Q* can be +ve or –ve

Work and Heat

• Are they the same ? Almost

Conventions

- ΔU negative system has lost energy
- W negative: work is done by the system
- *Q* negative: the system gives out heat

Energy and reactions

- A reaction will go forwards
 - if it gives out heat or
 - if you can do work on the system
- how can we see work ?
 - fan example
 - gas ?
- work done on a gas $W = -p\Delta V$ (pressure *p*, volume *V*)
- what is the total energy of a system ?
 - enthalpy = internal + pressure and volume
 - H = U + pV

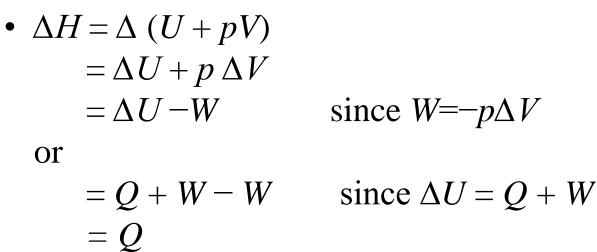
there is some kind of energy associated with pressure

• (think about zero pressure – no energy there)

pressure / volume / work

How can a reaction like $Zn(s) + 2H^+ \rightarrow Zn^{2+} + H_2$ do work?

- in picture, we could see volume change H = U + pV
- if we have a reaction at constant pressure
 - $\Delta H = \Delta (U + pV)$


Kolben Zn HCl-Lösung (a) H₂-Gas plus Anfangsatmosphäre Zn HCl-Lösung

04/10/2011 [64]

H enthalpy U internal energy p pressure V volume Q heat

Work / heat

• reaction at constant pressure

- in this kind of reaction the change in energy will be seen as heat
- little detour and summary of terms so far

Summarise energies

E is just energy – kinetic or potential of some kind

- units / dimensions will always be the same
- in any equation E = a + b + c then *a*, *b*, *c* are energies with same units
- U is internal energy
- you can change it by heating or doing work
 - work =acceleration, moving in a field, compressing, ...
 - the one form we have mentioned it $W = p \Delta V$
- heat has the same units as energy (not temperature)
 - what must be dimensions of *p* ?
- enthalpy *H* includes internal energy and work to organise the system $p\Delta V$

More energy summary

- Often we only care about changes ΔU or ΔV
- why so important ?
 - will reactions go forwards ?
 - how much work can I do from burning a kg of sugar ?
 - how much sunlight do I need to fix a kg of CO₂?

Reaction enthalpy

- $\Delta H = \Delta H_{\text{product}} \Delta H_{\text{reactant}}$
- $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- $4H_2(g) + 2O_2(g) \rightarrow 4H_2O(g)$
 - moles as given in reaction
- why do I say *H* and not *E* or *U*?
- must specify (s), (l), (aq), (g)
- $2 H_2 O(l) \rightarrow 2 H_2 O(g)$

 $\Delta H = -484 \text{ kJ}$ $\Delta H = -968 \text{ kJ}$

 $\Delta H = +88 \text{ kJ}$

- exothermic $\Delta H < 0$ likely to go forwards
- endothermic $\Delta H > 0$ not likely to go forwards
- calculate energy release to make $n \text{ g of H}_2\text{O}$
 - $2 H_2 O_2(1) \rightarrow 2 H_2 O(1) + O_2(g)$ $\Delta H = -196 \text{ kJ}$

energies / additivity

- energy is always conserved (sometimes not obvious)
- a total energy will be the sum of steps
- $A+B \rightarrow C \rightarrow D + E$ has $\Delta H_{A+B \rightarrow D+E}$
- $\Delta H_{A+B\to D+E} = \Delta H_{A+B\to C} + \Delta H_{C\to D+E}$
- we can go further and include change of states
- $A(l) + B(l) \rightarrow C(l) \rightarrow D(l) + E(g)$ will be the same as
- $A(l) + B(l) \rightarrow C(l) \rightarrow D(l) + E(l) \rightarrow D(l) + E(g)$
 - can work out total ΔH if we know parts
- consequences...

Enthalpy changes

- ΔH for $A \rightarrow B \rightarrow C \rightarrow D$ is same as $A \rightarrow R \rightarrow Q \rightarrow S \rightarrow T \rightarrow D$
- $\Delta H = 0$ $A \rightarrow B \rightarrow A$
- $\Delta H = 0$ $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A$ (cycle)
- water \rightarrow steam \rightarrow water $\Delta H = 0 \text{ kJ}$
- my battery (akku) NiMH or NiCd
- $\Delta H_{charge} = -\Delta H_{discharge}$
- Can we make a very general set of rules ?
 - standard enthalpies

standard enthalpy of formation

Definition

- standard enthalpy of formation $\Delta H^0 = 0$ for an element in most stable form
- $\Delta H^{\circ}(O_2) = 0, \Delta H^{\circ}(C, \text{graphite}) = 0$
- this is not true for other forms
 - C(graphite) \rightarrow C(diamond) $\Delta H = ?$
 - what will the sign be ? ...

standard enthalpy of formation

Definition

- standard enthalpy of formation $\Delta H^0 = 0$ for an element in most stable form
- $\Delta H^{\circ}(O_2) = 0, \Delta H^{\circ}(C, \text{graphite}) = 0$
- this is not true for other forms
 - C(graphite) \rightarrow C(diamond)
 - graphite is more stable, so we need to put in energy
 - $\Delta H^{\circ} > 0$ (about 1.8 kJ mol⁻¹)
- why is this helpful ?
 - make tables of common compound ΔH_f° then we can work out new ΔH_f°

example enthalpies of formation

- For some compound $A_m B_n(x)$ we have tables of ΔH_f^{o} for m A (standard) $+ nB(\text{standard}) \rightarrow A_m B_n$ (l)
- standard tables for forming 1 mol of substance at 298 K

Substance	kJ/mol	Substance	kJ/mol
CO(g)	-110.5	HBr(g)	-36.40
$CO_2(g)$	-393.5	HI(g)	26.48
$CH_4(g)$	-74.81	$H_2O(g)$	-241.8
$C_2H_2(g)$	226.7	$H_2O(l)$	-285.8
$C_2H_4(g)$	52.26	$H_2S(g)$	-20.63
$C_2H_6(g)$	-84.68	$NH_3(g)$	-46.11
$C_3H_8(g)$	-103.8	NO(g)	90.25
$C_4H_{10}(g)$	-125.6	$N_2O(g)$	82.05
$CH_3OH(1)$	-238.7	$NO_2(g)$	33.18
$C_2H_5OH(l)$	-277.7	$N_2O_4(g)$	9.16
HF(g)	-271.1	$SO_2(g)$	-296.8
HCl(g)	-92.31	$SO_3(g)$	-395.7

Examples

- ΔH_f^{o} for forming gas formaldehyde HCHO = -108.6 kJmol⁻¹
 - what is the reaction with correct numbers ?
 - $H_2(g) + \frac{1}{2}O_2(g) + C \text{ (graphite)} \rightarrow \text{HCHO } (g)$
- what is the standard enthalpy of burning ethane (C_2H_6) ?
- $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3 H_2O(l)$

energy of combustion

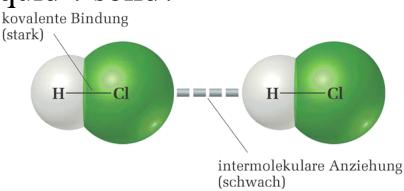
 $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2CO_2(g) + 3 H_2O(l)$

• imagine $2C(graphite) + 7/2 O_2 + 3/2 H_2$ $\rightarrow 2 CO_2 (g) + 3H_2O (g) \qquad \Delta H_f^{\circ} \text{ of } CO_2 \& H_2O$ $\rightarrow C_2H_6(g) \qquad \Delta H^{\circ} \text{ of combustion}$ $\rightarrow 2C (graphite) + 7/2 O_2 + 3/2 H_2 \qquad \Delta H_f^{\circ} \text{ of } C_2H_6(g)$ $total \Delta H^{\circ} = 0 (cycle)$

LHS =
$$-86 + 0$$

RHS = $2 \times -394 + 3 \times -286 = -1646$
difference = -1560 kJ mol -1

• do the same for burning ethanol CH₃CH₂OH


Stop here summary

- different kinds of energy, potential, kinetic
- energy, work, heat, $p\Delta V$
- enthalpy
- enthalpy calculation from tables
- problems start on p 238 of book

Chap 11 Intermolecular Forces

Chap 11 intermolecular forces

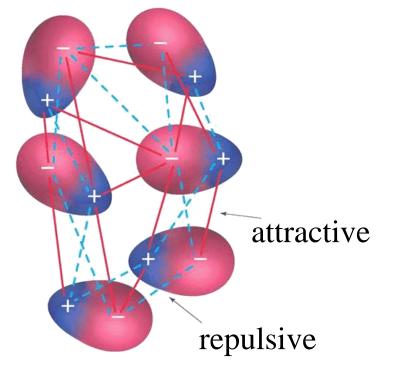
- when does a protein bind a therapeutic ?
- when does a molecule dissolve in cell or membrane ?
- when does something form a gas ? liquid ? solid?
- all parts of intermolecular forces
- what holds substances together ?

charges and rules

- charge charge energy / coulombs law • say $U(r_{ij}) \approx r_{ij}^{-1}$
- $U(r_{ij}) = \frac{q_i q_j}{4\pi\varepsilon r_{ij}}$

- charge dipole • $U(r_{ij}) \approx r_{ij}^{-2}$ + an angular term
- dipole dipole

$$U(r_{ij}) \approx r_{ij}^{-3}$$
 + an angular term


- even weaker
- induced dipoles

Ion – dipole attraction

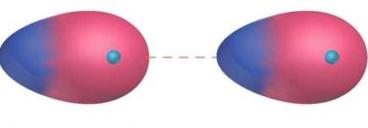
- most important ionic solutions, polar solvents
 - NaCl in water

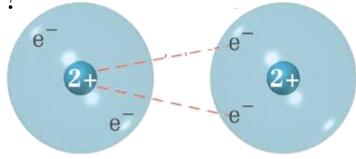
dipole-dipole forces

- important for polar liquids (H₂O)
- the more polar a liquid
 - higher boiling point
- remember distance dependence
 - weaker forces which fall off with r^{-2}

London dispersion forces

- much more in summer semester
- why does argon form a liquid ?
- why would these two He atoms attract ?
- on average electron clouds are spherical
- electron clouds wobble
 - temporary dipole

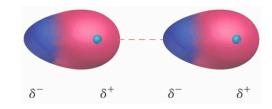

 δ^+

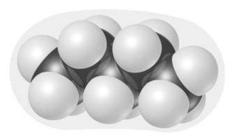

 δ^{-}

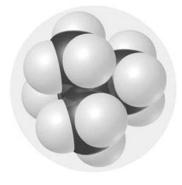
• what happens to a neighbouring atom ?

 δ^{-}

 δ^+

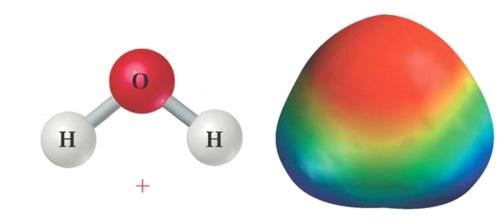



note partial charges – induced dipoles


dispersion forces

- the polarisation is not always there comes and goes
- how important is it ?
 - if you have large electron clouds
 - polarisable

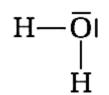
- He not very polarisable (very hard to liquify)
- Ar much easier
- compounds like alkanes are not polar, but have lots of electrons

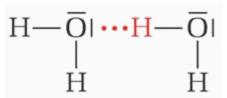


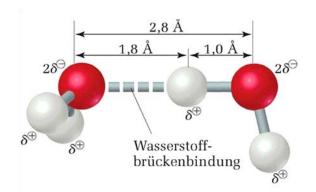
dispersion forces

- not important
 - weak
- important apply everywhere
 - apply to polar molecules (weaker than ion or dipole)
 - apply to apolar atoms/molecules
 - the only important force
- very short distance $U(r_{ij}) \approx r_{ij}^{-6}$

Hydrogen bonds

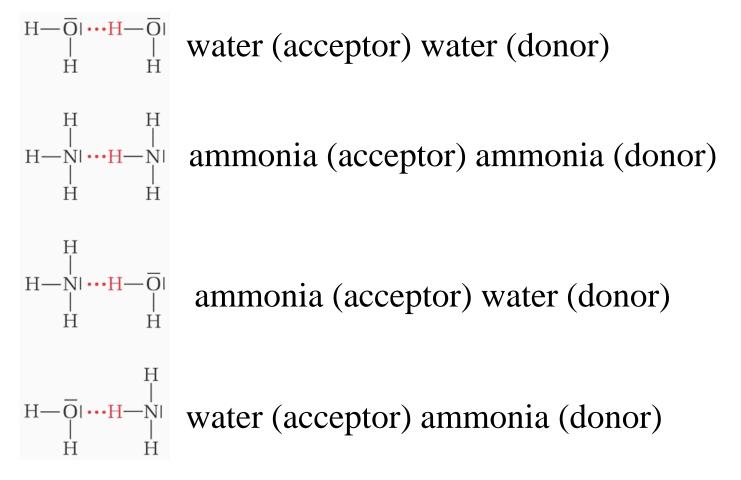

- very important in biological systems
 - basis of protein, RNA and DNA folding and water structure
- water story
 - unusually high melting (273 K), boiling point (373 K), heat capacity, energy of vapourisation $(l \rightarrow g)$
 - strong forces hold water molecules together
- water is very polar
 - electron density around O is high
 - at the hydrogen very +ve

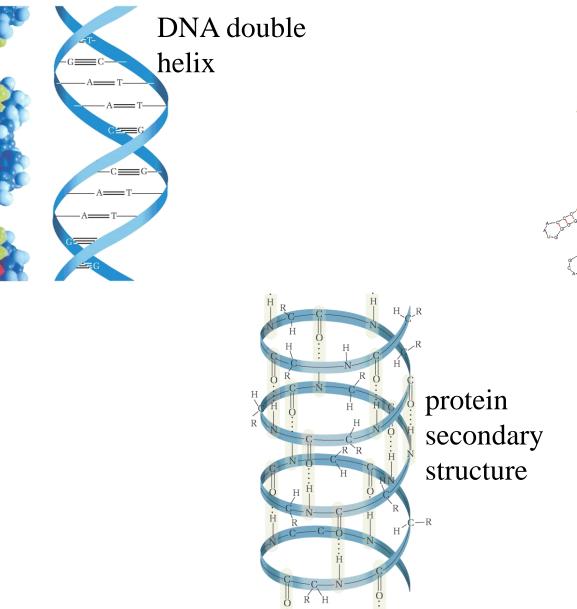



water and H-bonds

- electronic structure of water
 - free electron pairs (lone electrons)
 - other end is very positive

- what does ice look like ?
- 1.8 Å is small almost a bond
 - H-bond

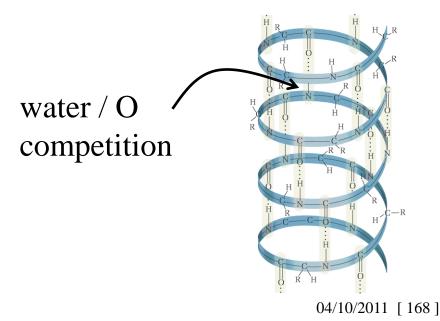




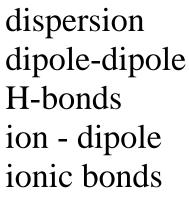
H-bonds

- water is not the only example one needs
 - H bound to very electronegative atom (O, N, F)
 - atom with free electron pair (usually O, N, F)

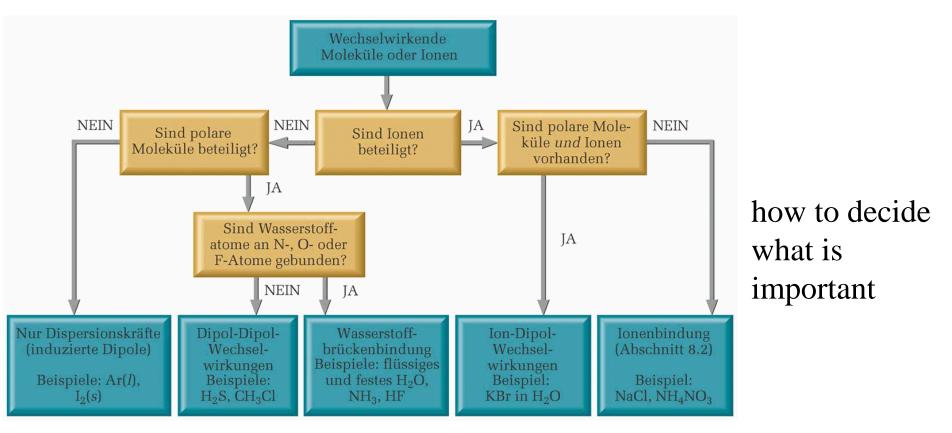
H bonds



RNA secondary structure



H bonds


- In general
 - DH ... A
 - donor H ... acceptor
- energy -4 to -25 kJmol⁻¹
- in some systems
 - they are fixed (ice)
 - they come and go (water, macromolecules in water)
- competition for donors/acceptors

induced dipolespolar moleculesdonor and acceptorsalts in watersolid saltsstrong

intermolecular forces - end

- these forces are most important in liquids and solids
- there are solids based on
 - dispersion not so important
 - dipole-dipole not so important
 - H-bonds ice
 - ionic salts
- if you put in enough energy (heat) things melt
- these forces responsible for
 - melting, boiling temperatures
 - heat of vaporisation
 - viscosity of liquids
 - solubility
 - brittleness / flexibility of solids

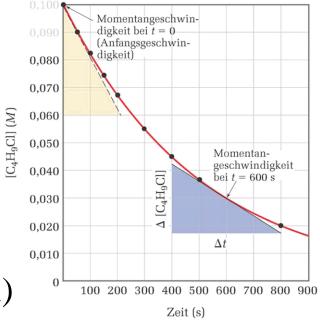
Chap 14 Kinetics

Chap 14 kinetics

- how fast do reactions go ?
 - reactions are not only the obvious ones
- will reach simple equations (can be very complicated)
- factors
 - state (s, l, g; surface reactions, mostly liquids for us)
 - concentration
 - temperature; $T\uparrow$ rate \uparrow
 - catalysts something that accelerates a rate

reaction velocity

- concentration is formally mol m^{-3}
- chemists use mol l⁻¹, M, molar solution [X]
- 1 mM solution of A
 - [A] = 1mM
 - 1mM of A in1 liter of water
- how to describe a reaction velocity ?
 - change in concentration with time
 - M s⁻¹
 - could be for forward, backward, creation, breakdown
 - $A + B + C + D \leftrightarrow Q + R$ you just have to explain


 $\Delta[A]$

 Δt

• not always so useful – reaction rates change

reaction rates

- in a closed system $A + B \leftrightarrow Q + R$
 - at first lots of reactants [A], [B] high
 - later very little
 - Δ [A] and Δ [B] must also be smaller
- let us avoid talking about velocity like this

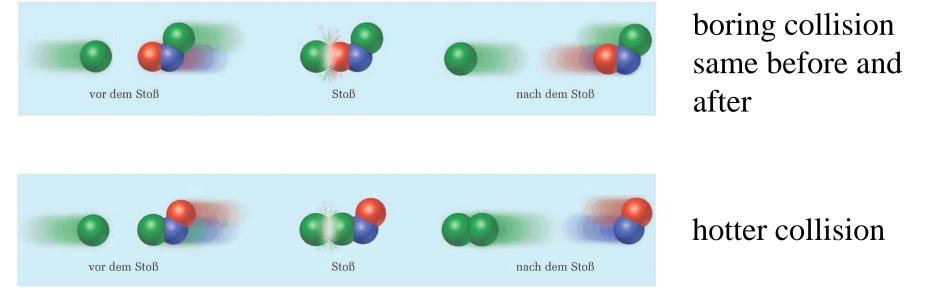
- $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$
 - reaction velocity depends on concentrations
 - velocity is $k[NH_4^+][NO_2^-]$
- more general

reaction velocity rule

$a \mathbf{A} + b \mathbf{B} \rightarrow c \mathbf{C} + d \mathbf{D}$

- velocity is $k[A]^m[B]^n$ for some constants *m* and *n*
- *k* is the reaction constant
- *a* and *b* let us make guesses, but there are lots of exceptions

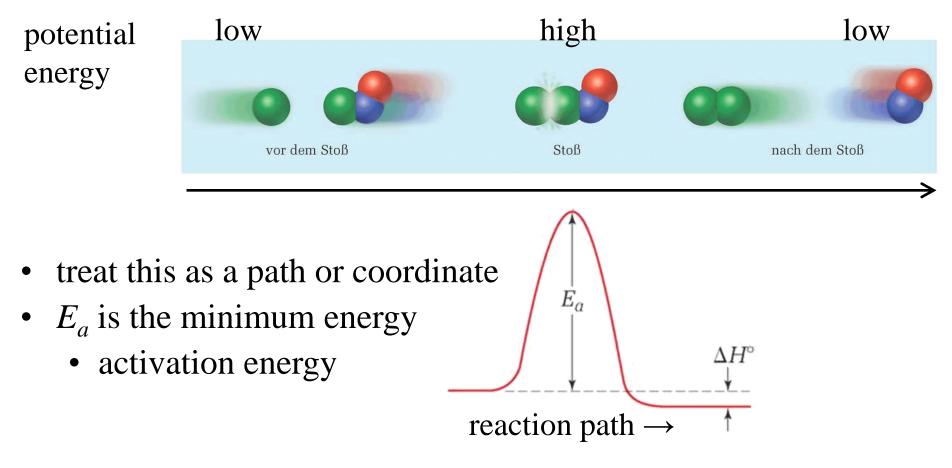
exponents *m* and *n*


- for simple reactions, often 1
- $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$
- velocity = $k[NH_4^+][NO_2^-]$
 - first order in ammonium and first order in nitrite
 - second order reaction
- intuitively reasonable
 - reaction requires two ions to collide

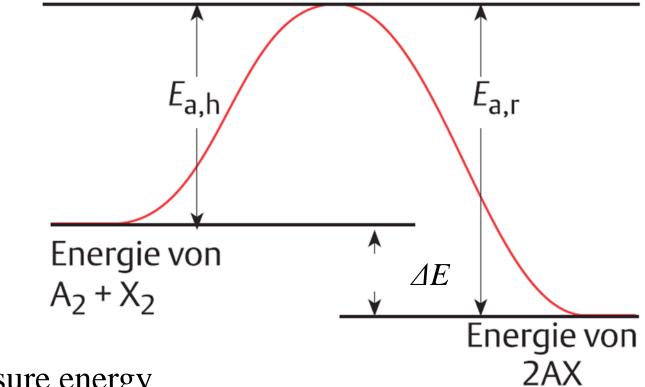
reaction rate exponents

- for $A + B \rightarrow C + D$
- usually reaction rate depends on collision frequency
 - [A] and [B]
- the constant *k* hides all the details (how often does a collision lead to a reaction ?)
- surprises
 - $\operatorname{CHCl}_3(g) + \operatorname{Cl}_2(g) \rightarrow \operatorname{CCl}_4(g) + \operatorname{HCl}(g)$
 - velocity is k [CHCl₃] [Cl₂] ^{1/2}
 - what does it mean ?
 - reaction is not a simple matter of collision
 - what could explain it ?

Reaction velocity - collisions


• mechanical view.. $Cl + NOCl \rightarrow NO + Cl_2$

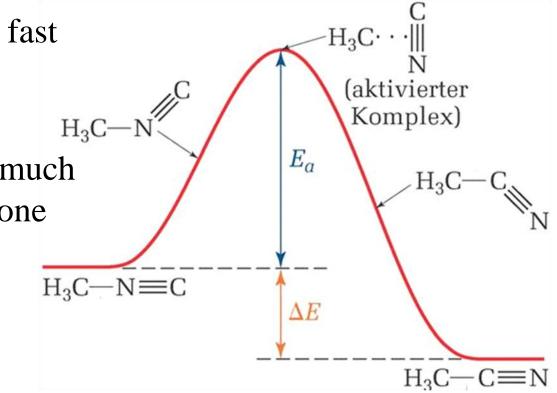
- collisions effective or ineffective
 - orientation (not much you can do)
 - temperature...
- good rule: everything goes faster with higher temperature


Reaction rate – activation energy

• one needs a minimum energy to break bonds, bring atoms together

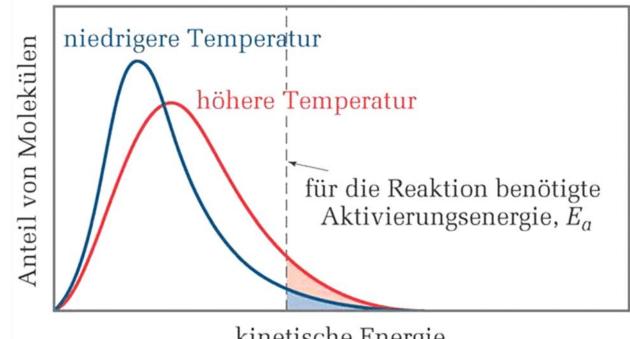
Reaction and activation energy

• almost every reaction is characterised by activation energy – example $A_2 + X_2 \rightarrow 2AX$


- If you measure energy change
 - see ΔH (here I use ΔE)

Activation energy

- E_a is activation energy of forwards reaction
 - imagine how much energy must one add to have a successful collision
- what would $E_{a,r}$ be ? • what if E_a is • small or large ? Energie von $A_2 + X_2$ Energie von 2AX


Energy of reaction and activation energy

- the activation energy may not be for a collision
 - it always means going over some barrier
- if E_a is small reaction is fast
- if ΔE is big
 - heat released
- a reaction which releases much energy need not be a fast one

Temperature and reaction velocity

how many particles have enough energy to react?

kinetische Energie

 $f = e^{-\frac{E_a}{RT}}$

- fraction with enough energy
 - R is gas constant

effect of temperature

• reaction rate is proportional to the fraction of particles with enough energy $f = e^{-\frac{E_a}{RT}}$

$$f = e^{-\frac{a}{I}}$$

- then $k = Ae^{-\frac{E_a}{RT}}$
- practice / Übung
 - how would you determine activation energy from rate measurements at two temperatures ?

more complicated pictures

- not discussed here
 - reactions might have several steps
 - often a few steps dominate

equilibria

- what if E_a is very small ?
 - reaction might seem instantaneous
- what is ΔE is very –ve, very +ve, near zero
- draw pictures
- more on equilibria later

Catalysis

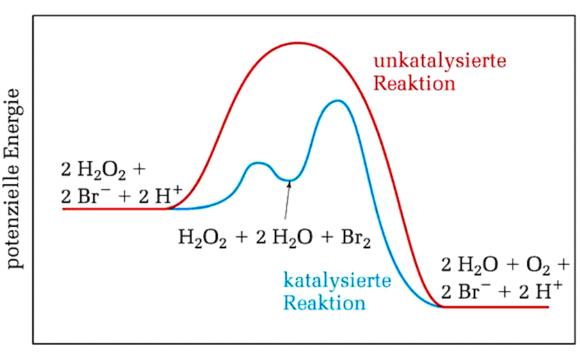
- what if you have a reaction
 - $A + B \rightarrow C + D$
 - velocity seems to be independent of [A], [B] ?
 - explanation : reaction is really
 - $A + B + X \rightarrow X + C + D$
 - X goes into reaction and comes out unchanged
 - reaction very dependent on X
 - if you have small amount of X, it is the limiting component – does not matter how much A or B
- very general catalysts might be
 - exotic metals in your exhaust pipes
 - very big proteins enzymes

Catalysis – simple example

- $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
 - reaction is exothermic, but not really spontaneous (you can buy H_2O_2
- What if I add some HBr ?

 $2 \operatorname{Br}^- + \operatorname{H}_2\operatorname{O}_2\left(\operatorname{aq}\right) + 2\operatorname{H}^+(\operatorname{aq}) \to \operatorname{Br}_2\left(\operatorname{aq}\right) + 2\operatorname{H}_2\operatorname{O}\left(\operatorname{l}\right)$ then

 $\mathrm{Br}_2\left(\mathrm{aq}\right) + \mathrm{H}_2\mathrm{O}_2\left(\mathrm{aq}\right) \rightarrow 2 \ \mathrm{Br}^-\left(\mathrm{aq}\right) + 2\mathrm{H}^+(\mathrm{aq}) + \mathrm{O}_2(\mathrm{g})$


• add these together gives

 $\mathrm{H_2O_2}\,(\mathrm{aq}) \rightarrow 2\mathrm{H_2O}\,(\mathrm{l}) + \mathrm{O_2(g)}$

- example of general principle
- catalyst changes the path of a reaction, but not start and end points

catalysts

- Many types of catalysis
- something provides an alternative reaction path (HBr)
- something binds to intermediate and lowers energy
- something orients the reactants – increases probability of successful collision
- biological catalysts

Reaktionsweg

Enzymes

- an enzyme is just a catalyst
- large molecules
- most enzymes are proteins
- many proteins are enzymes

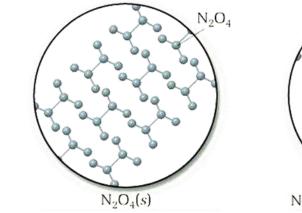
catalysts – last words

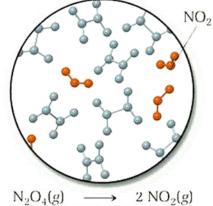
- some are well understood many not
- reaction velocity may be too slow to measure without a catalyst
- may speed reaction by factor of 2 or 2²⁰
- may be big like a protein, solid as in exhausts or small as a proton

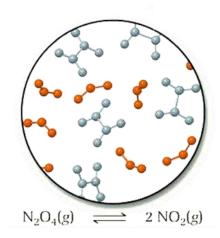
Summarise reaction velocities

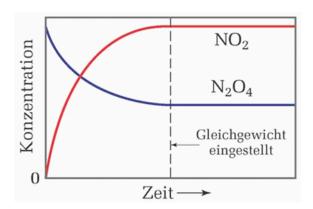
- instantaneous velocity
- reaction constant *k*
- (zero), first, second order reactions
- idea of collisions / some high energy state
- if we do not have an energy barrier, difficult to speak of a reaction
- energy of a reaction is not the same as activation energy
- catalysts

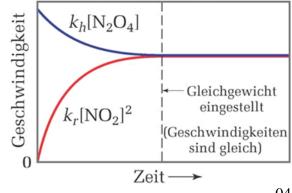
Chap 15 Equilibria / Gleichgewicht


Chap 15 Equilibria


- here in chemistry context
- next summer semester in statistical mechanics context
- most reactions spoken about look like $A + B \rightarrow C + D$
- can a reaction go
 - $C + D \rightarrow A + B$
- usually a bit
 - sometimes very much
- write it differently..

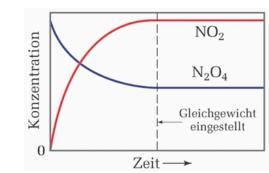

 $A + B \leftrightarrow C + D$

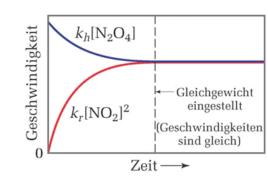

equilibria


- $N_2O_4(g) \leftrightarrow 2 NO_2(g)$
 - $N_2O_4(g) \rightarrow 2 NO_2(g)$
 - $2 \operatorname{NO}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$
- treat this as two reactions velocity $k_f [N_2O_4]$ velocity $k_b [NO_2]^2$

04/10/2011 [192]

equilibria


2


at equilibrium

- velocity of \rightarrow and \leftarrow is equal
- concentrations are not equal

$$\begin{split} & \mathrm{N}_2\mathrm{O}_4\,(\mathrm{g}) \to 2 \, \mathrm{NO}_2\,(\mathrm{g}) \qquad \text{velocity } k_f\,[\mathrm{N}_2\mathrm{O}_4] \\ & 2 \, \mathrm{NO}_2(\mathrm{g}) \to \mathrm{N}_2\mathrm{O}_4\,(\mathrm{g}) \qquad \text{velocity } k_b\,[\mathrm{NO}_2]^2 \end{split}$$

$$k_f [N_2 O_4] = k_b [NO_2]$$
$$\frac{[NO_2]^2}{[N_2 O_4]} = \frac{k_f}{k_b} = k_c$$

- given $[NO_2]$ we know $[N_2O_4]$
 - more generally

04/10/2011 [193]

equilibrium constant

• $a A + b B \leftrightarrow c C + d D$ $k_c = \frac{\text{products}}{\text{reactants}} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$

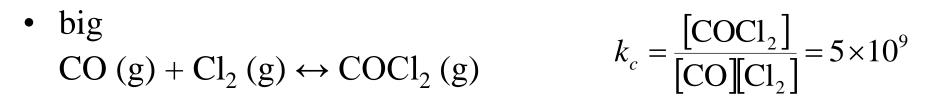
•
$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$$
 $k_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$

- how big are the numbers ?
- $2 C_6 O_6 H_6 + 9 O_2 \rightarrow 12 CO_2 + 6 H_2 O_k >> 1$
 - write with $a \rightarrow$
- CH₃COOH (aq) \leftrightarrow CH₃COO⁻ (aq) + H⁺ (aq) $k_c \approx 10^{-4.8}$
 - not so strong, but enough so you can detect ions
- lots of biochemical reactions are equilibria

Example calculation

 $2ONCl(g) \leftrightarrow 2NO(g) + Cl_2(g)$

- at equilibrium, 10 % of ONCl is dissociated what is k_c ?
- $H_2(g) + I_2(g) \leftrightarrow 2HI(g)$ $k_c = 64$
- at equilibrium with ½ mol HI, how much H₂ have we ? (no calculator necessary)


Example calculation

 $2ONCl(g) \leftrightarrow 2NO(g) + Cl_2(g)$

- at equilibrium, 10 % of ONCl is dissociated what is k_c ?
- $H_2(g) + I_2(g) \leftrightarrow 2HI(g)$ $k_c = 64$
- at equilibrium with $\frac{1}{2}$ mol HI, how much H₂ have we ?

$k_c = \frac{[\mathrm{HI}]^2}{[\mathrm{H}_2][\mathrm{I}_2]}$	$[H_2]^2 = \frac{[HI]^2}{k_c}$
$=\frac{[\mathrm{HI}]^2}{[\mathrm{H}_2]^2}$	$[H_2] = \frac{[HI]}{k_c^{1/2}}$

Equilibrium constants

- near 1 $N_2O_4(g) \leftrightarrow 2 NO_2(g)$ $k_c = \frac{[NO_2]^2}{[N_2O_4]} = 0.2$
- reverse reaction

 $2 \text{ NO}_2(g) \leftrightarrow \text{N}_2\text{O}_4(g)$ $k_c = 1/0.2 = 5$

- big k_c reaction goes forwards
- k_c near 1, reaction goes both directions

Combining reactions

• start

 $2 \operatorname{NOBr}(g) \leftrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \qquad k_c = 0.01$

- add something to remove Br_2 $Br_2(g) + Cl_2(g) \leftrightarrow 2 BrCl(g)$
- total reaction
- $2 \operatorname{NOBr} (g) + \operatorname{Br}_2 (g) + \operatorname{Cl}_2(g) \leftrightarrow 2 \operatorname{NO} (g) + \operatorname{Br}_2(g) + 2 \operatorname{BrCl}(g)$
- really

 $2 \text{ NOBr } (g) + \text{Cl}_2(g) \leftrightarrow 2 \text{ NO } (g) + 2 \text{ BrCl } (g)$

$$k_{c} = \frac{[\text{NO}_{2}]^{2}[\text{Br}_{2}]}{[\text{NOBr}]^{2}} \frac{[\text{BrCl}]^{2}}{[\text{Br}_{2}][\text{Cl}_{2}]}$$
$$= \frac{[\text{NO}_{2}]^{2}[\text{BrCl}]^{2}}{[\text{NOBr}]^{2}[\text{Cl}_{2}]} = 7.2 \times 0.01 = 7 \times 10^{-2}$$

 $k_{c} = 7.2$

Equilibria – summary of obvious

- k_c known
 - which way does a reaction go
 - calculate equilibrium concentrations
- what you cannot do
 - calculate speed
 - spontaneity (will a reaction take place)

le Châtelier

• $A + B \leftrightarrow C + D$

$$k_c = \frac{[C][D]}{[A][B]}$$

- system at equilibrium, add C
 - $k_c = \text{constant}$
 - only way is to move $C+D \rightarrow A+B$
 - removes C
- le Châtelier
 - system responds so as to oppose changes
- let us quantify this

responding to changes in environment

 $k_c = \frac{\left[\mathbf{C}\right]\left[\mathbf{D}\right]}{\left[\mathbf{\Delta}\right]\left[\mathbf{B}\right]}$

- say $k_c=1$
- initial [A], [B], [C], [D] = 1
- add 1 unit of C
- what is the new [C] ?
- Say *x* amount of C will disappear then
 - x of A will appear, new [A] = 1 + x
 - x of B will appear, new [B] = 1 + x
 - x of C will disappear, new [C] = 2 x
 - x of D will disappear, new [D] = 1 x
- (may I write a, b, c, d ? to save typing)

$$k_{c} = \frac{cd}{ab} = \frac{(2-x)(1-x)}{(1+x)(1+x)}$$

$$k_{c} = \frac{cd}{ab} = \frac{(2-x)(1-x)}{(1+x)(1+x)}$$
$$1 = \frac{x^{2} - 3x + 2}{(x+1)^{2}}$$

• this kind of calculation may not be in book

$$x = \frac{1}{5}$$

. . .

- so [A] = [B] = 1 + x = 6/5
- [C] = 2 x = 9/5
- [D] = 1 x = 4/5
- check..

$$\frac{cd}{ab} = \frac{\frac{9}{5} \frac{4}{5}}{\frac{6}{5} \frac{6}{5}}$$

le Châtelier more generally

- $PCl_{5}(g) \leftrightarrow PCl_{3}(g) + Cl_{2}(g)$
- 1 mol gas \leftrightarrow 2 mol gas
- start at equilibrium, increase pressure
 - more PCl₅ is formed (to compensate for pressure)
- making ammonia $N_2(g) + 3H_2(g) \leftrightarrow 3NH_3(g)$ but $k_c < 1$
- if you keep removing NH₃ system keeps making more
- acid base buffering
 - more from chapter

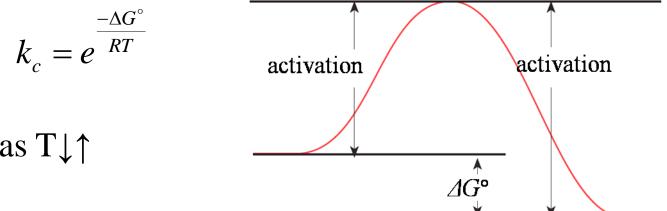
equilibria and energy

- Achtung ! Not in big red book
- detour

• Nernst
$$V = V_0 - \frac{RT}{zF} \ln \frac{a_{red}}{a_{ox}}$$

• Boltzmann
$$\frac{p_1}{p_2} = e^{\frac{E_2 - E_1}{kT}} \qquad \Delta E = -kT \ln \frac{p_1}{p_2}$$

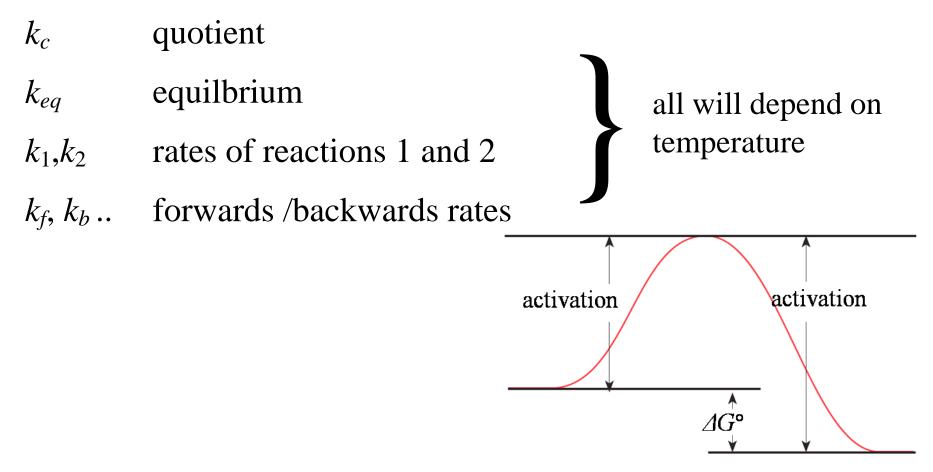
 \mathbf{D}


- Today Gibbs free energy
 - *R* gas constant
 - *T* temperature
- important implications

$$\Delta G^{\circ} = -RT \ln K_c$$

equilibrium constants and temperature

- textbooks use k_c for some temperature and 100 kPa
 - why must k_c be temperature specific ?


 $\Delta G^{\circ} = -RT \ln K_c$ $= -RT \ln \frac{\text{products}}{\text{reactants}}$

- what happens as $T\downarrow\uparrow$
 - extremes

constants and energy

- equilibrium constants are not constant
- books quote k_c , k_{eq} , ... all are temperature dependent

Chap 16 Acid / Base Säuren / Basen

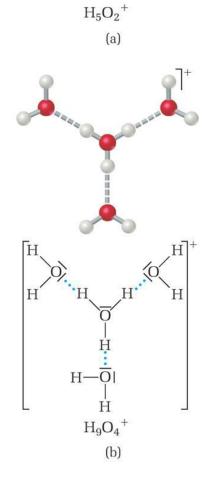
Chap 16 ... acid / base (Säuren / Basen)

Important for this topic

- general definition (Brønsted-Lowry)
 - an acid can give up a proton
 - a base can accept a proton
- some compounds can do both (water)

what do protons do in solution ?

- so far we have seen H⁺
 - does not really exist very small, very dense +ve charge


$$\begin{array}{c|c} H^{+} + I\overline{O} - H \longrightarrow & H - \overline{O} - H \\ H & & H \\ H & & H \end{array} \right|^{+}$$

water as a base

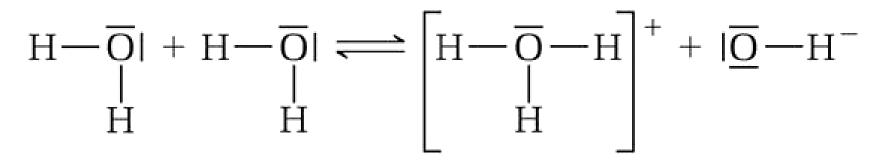
- $H^+(aq) + H_2O(l) \rightarrow H_3O^+(aq)$
 - structures really temporary so H₅O₂⁺ exists (and more)

water as an acid / base

- water is a base (accepts a proton)
 - $HNO_3 + H_2O(1) \rightarrow NO_3^- + H_3O^+(aq)$ ammonia and water
- water is an acid (donates a proton) $NH_3(aq) + H_2O(l) \leftrightarrow NH_4^+(aq) + OH^-(aq)$
- more generally

Acid-base pairs

- $HX + H_2O \leftrightarrow X^- + H_3O^+$
- HX is an acid, X^- a base
- just about anything with proton can be an acid – just a weak one
- strong acids
 - left column top
- strong bases
 - right column bottom


		Säure	Base		
$\left. \begin{array}{c} {\rm in} \ {\rm H_2O} \\ {\rm praktisch} \\ {\rm zu} \ 100\% \\ {\rm dissoziiert} \end{array} \right\}$	stark	HCl	Cl^{-}	verschwin- dend gering	
		H_2SO_4	HSO_4^-		
		HNO_3	NO_3^-		
		$H_3O^+(aq)$	H_2O		
		$\mathrm{HSO_4}^-$	SO_4^{2-}		tzu
		H_3PO_4	$\mathrm{H_2PO_4}^-$		nmt
Î		HF	F^-		e nii
amt zu	schwach	CH ₃ COOH	CH_3COO^-	schwach	— Basenstärke nimmt zu
		H_2CO_3	HCO_3^-		
		H_2S	HS^{-}		
		$\mathrm{H_2PO_4}^-$	$\mathrm{HPO_4}^{2-}$		
nir		$\mathrm{NH_4}^+$	NH3		
ärke		HCO_3^-	CO3 ²⁻ PO4 ³⁻		
Säurestärke nimmt zu		$\mathrm{HPO_4}^{2-}$	PO_4^{3-}		,
		H ₂ O	OH^-		-
	verschwin- dend gering	OH-	O ²⁻	stark	in H ₂ O
		H_2	H^{-}		praktisch zu 100%
	vers	CH_4	$\mathrm{CH_3}^-$		protoniert

water ionic product

• water is an acid and a base $2 H_2O \leftrightarrow H_3O^+ + OH^-$

```
• or
```

 $\mathrm{H}_{2}\mathrm{O} \leftrightarrow \mathrm{H}^{+} + \mathrm{O}\mathrm{H}^{-}$

- quantify this ? like for any reaction there is k_c
- $H_2O \leftrightarrow H^+ + OH^-$ do **not** use k

$$e \quad k_c = \frac{\left[\mathbf{H}^+ \right] \mathbf{O} \mathbf{H}^- \right]}{\left[\mathbf{H}_2 \mathbf{O} \right]}$$

- use $k_w = [H+] [OH^-] = 10^{-14}$ dissociation constant for water
- only works at 298 K

pН

- neutral $[H^+] = [OH^-] = 10^{-7}$
- $pH = -\log_{10}[H+]$
 - example at pH = 3[H⁺] = 10⁻³, [OH⁻]=10⁻¹¹

		[H ⁺] (M)	pН	рОН	[OH ⁻] (M)
		$- 1 (1 \times 10^{0})$	0,0	14,0	1×10^{-14}
stärker sauer	Magensäure – – – – – – –	$- 1 \times 10^{-1}$	1,0	13,0	1×10^{-13}
	Zitronensaft	$- 1 \times 10^{-2}$	2,0	12,0	1×10^{-12}
	Cola, Essig	$- 1 \times 10^{-3}$	3,0	11,0	1×10^{-11}
	Wein Tomaten Bananen schwarzer Kaffee	$- 1 \times 10^{-4}$	4,0	10,0	1×10^{-10}
		-1×10^{-5}	5,0	9,0	1×10^{-9}
stärker basisch	Regen Speichel Milch menschliches Blut, Tränen Eiweiß, Meerwasser Backpulver (Soda) Borax Magnesiummilch Kalkwasser Haushaltsammoniak	-1×10^{-6}	6,0	8,0	1×10^{-8}
		-1×10^{-7}	7,0	7,0	1×10^{-7}
		-1×10^{-8}	8,0	6,0	1×10^{-6}
		$- 1 \times 10^{-9}$	9,0	5,0	1×10^{-5}
		-1×10^{-10}	10,0	4,0	1×10^{-4}
		-1×10^{-11}	11,0	3,0	1×10^{-3}
		-1×10^{-12}	12,0	2,0	1×10^{-2}
	0,1 <i>M</i> -NaOH	-1×10^{-13}	13,0	1,0	1×10^{-1}
		$- 1 \times 10^{-14}$	14,0	0,0	1 (1×10 ⁰)

04/10/2011 [212]

pH / dissociation constant

- strong acids / bases assume complete dissociation
 - HCl, HNO₃,.. & NaOH, KOH, ..
- weak acids / bases we have an equilibrium constant k_s or k_a

$$k_a = \frac{\left[\mathbf{H}^+\right]\mathbf{O}\mathbf{H}^-\right]}{\left[\mathbf{H}\mathbf{A}\right]}$$

- ways to use this
 - from concentration of acid/base work out pH
 - given pH, work out how much of acid is ionised
- quick examples

Dissociation constant

- cheat with weak acids
- formic acid (ameisensäurelösung)
 - 0.1 M in water gives pH 2.38
 - HCOOH \rightleftharpoons H⁺ + HCOO⁻
 - get fraction ionised, get k_s
 - cheat and say it does not ionise too much so
 - $[H^+] \approx [HCOO^-]$ & $[H^+] = 10^{-2.38} M$
 - [HCOOH] ≈ 0.1 M

this is a different result to page 791 of the book – who is right ?

$$k_{s} = \frac{\left[H^{+}\right]\left[HCOO^{-}\right]}{\left[HCOOH\right]}$$
$$= \frac{10^{-2.38} \cdot 10^{-2.38}}{0.1} = \frac{10^{-4.76}}{10^{-1}} = 10^{-3.76}$$
$$\approx 1.7 \times 10^{-4} \mod 1^{-1}$$