Protein Fold Recognition Weak Similarities

- why do we do sequence alignments ?
 - find related proteins
 - build models
 - guess at function
- For some interesting protein
 - sequence always available
- What should one do with really weak sequence homology?
- two ideas
 - how to search for very weak similarities
 - can one take advantage of conserved structures?

Andrew Torda, Wintersemester 2011 / 2012, AST

Mission

Problem

- for some protein sequence find as much as possible
 - function
 - build good model
 - build a bad model
- relatively vague information may be useful
 - which residues are near active site ?
 - which residues are near a dimer interface ?
 - which residues are in weakly structured loops ?
 - overall shape (bad model) may be enough for phasing

Approach

- start with most reliable methods
- add more speculative methods as necessary
- Example
 - simple sequence searches
 - searches for more remote homologues
 - searches for possible structures

- methods so far
 - emphasis on speed (in Georgio's lectures)

alignment methods

	slow	fast
methods	Needleman & Wunsch / Smith-Waterman	′ seeded – blast, fasta, suffix tree methods
time	O(<i>nm</i>) or O(<i>nm</i> ²) (sequence sizes)	O(<i>nk</i>) – database size
guaranteed to find optimal alignment	yes	no
very remote homologues	may work	less likely to work

• does speed matter ?

Slow methods

- Methods for large databases are
 - fast
 - approximate
- Here
 - ultimate use is often a small database (PDB 8×10⁴)
 - computer time does not matter
- In lab you have 1 or 10's of proteins
 - each take weeks or months to work on
 - if each search takes hours ? no problem
- remote searches

Remote searches

When to do this?

- Assume simple (blast / fasta) search returned
 - related sequences
 - unknown function
 - none of related proteins have known structures

Weak sequence similarities

• Your sequence

yours **A B D E F G H I K L M N P Q**...

• finds no helpful proteins. Try searching with a related protein

prot_1 A B Q E F G R I S L T N P Q...

- finds a protein whose structure has been solved
 prot_2
 Q B Q E Q G R Q S L T N P A...
- claim
 - yours & prot_2 are related
 - relationship too weak to see directly
 - prot_2 can be used
 - to make a bad model
 - as a guess for function

Weak sequence similarities

- first idea
- take your protein
- collect related proteins
 - foreach (related protein)
 - do a sequence search
 - see if results change
- not practical
- not very systematic
- what else does one get from homologues ?

Information from related sequences

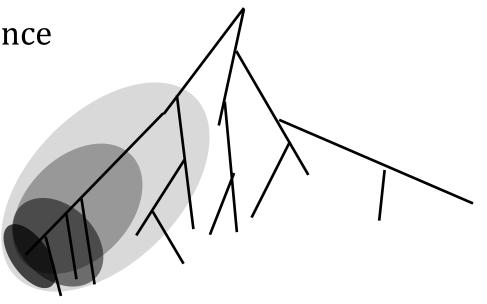
...

...

... ...

- usually one finds many related sequences.
- consider details...

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG *MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG* VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAOVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG *MLS PADKTNVKAAWGKVGAHAGEYGAEALERMFLS FPTTKTY FPHFDLSHGSAOVKGHG* VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG *MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG* VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAYWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSAADKTNVKAGWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAFWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAEWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAOVKGHG MLSPADKTNVKADWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQG VLSPADKTNVKACWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAOVKAHG VLSPADKSNVKAWWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAOVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAOWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSOVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG


Conservation

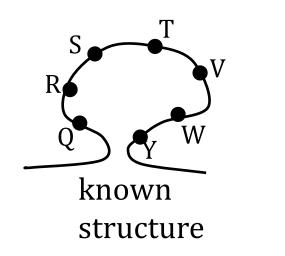
- as in secondary structure prediction lectures
- if your sequence has a ghere,
 - may not be helpful to use it in sequence searches

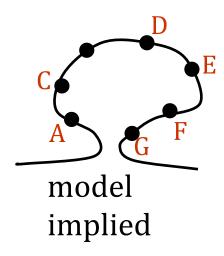
- better to use the "average" residue at this point
- first have to find the "average" residue
- leads to method

Searching with profiles

- initial average_sequence = your_sequence
- while (step < max_steps)
 - search with blast using average_sequence
 - if interesting result (function / structure..)
 - return results
 - else
 - update average_sequence
- basis of "psi-blast"
- does it work ?

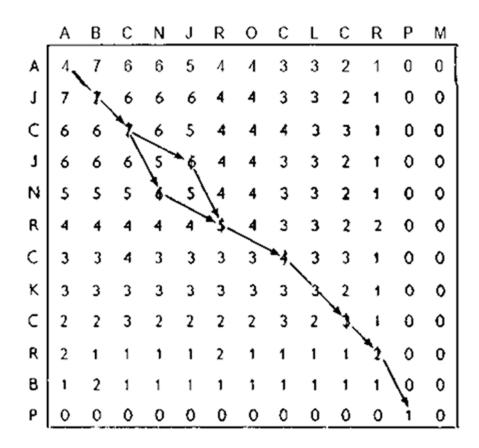
Remote sequence searching

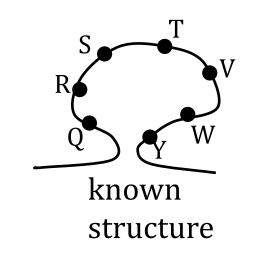

- much more sensitive than simple searches, but
- involves weaker sequence similarities, more errors
- alignment not perfect
- statistical significance harder to estimate
- possibility of finding unrelated sequences (rubbish)
- still relies on some significant sequence similarity
- can one move away from sequence similarity?


Why move away from sequence

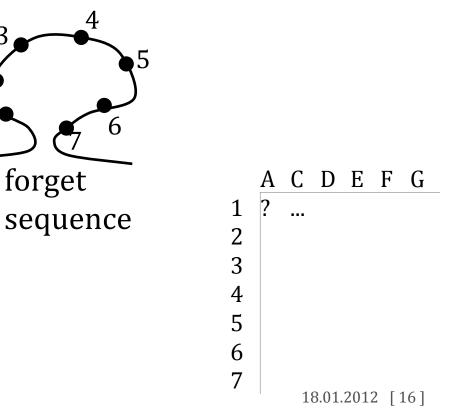
- if sequences provide information use this
- when does it fail ?
 - new functions, not yet

Sequence alignments – implied structures


- From sequence viewpoint
 - .. AC-DEFG..
 - ..QRSTVWY..
- what if structure of second sequence is known?
 - .. AC-DEFG.. query sequence
 - ..QRSTVWY.. known structure

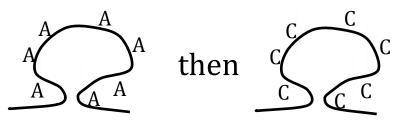

Sequence to structure alignments

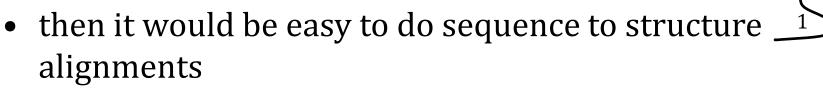
- Remember how sequence alignments work
 - similarity / substitution scores
 - fill out score matrix
 - find best path
- Can we use this for sequence to structure alignments ?



more exotic scoring

- From sequence viewpoint
 - .. AC-DEFG.. my sequence
 - ..QRSTVWY.. a protein of known structure
- rather than just align sequences, could I use the structure ?




• score matrix ?

sequence to structure scoring

• I have to be able to place (A, C, D..) at each position and get a suitability score

- advantage:
 - we claim that structure is more conserved than sequence
 - can find appropriate/fitting/suitable structures for a sequence
 - very remote, but homologues
- vorsicht !!!!

C D E F

A ?

1

2

3

4

5

6

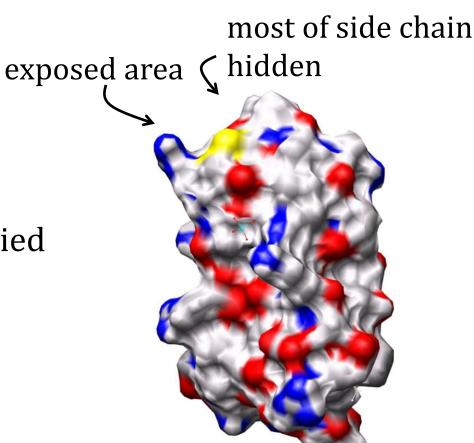
7

sequence to structure scoring

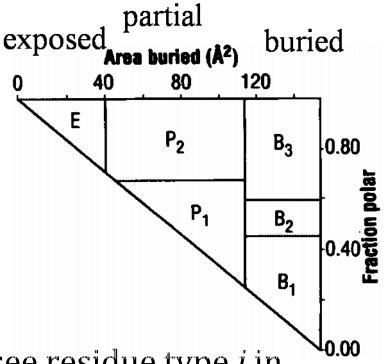
- define an energy function
 - depends on interaction of residue with structure
 - easy
 - depends on interaction with neighbours
 - but who are the neighbours ?

- bad news
 - we cannot even fill out a column in the score matrix
 - to test every combination of neighbours
 - NP-complete
- an excuse to try some approximations

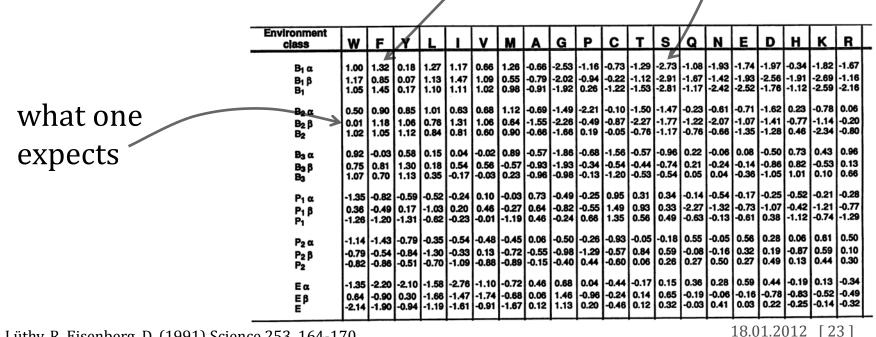
ACDEFG


approximations for scoring

- two problems
 - we do not know where all the atoms are side chain coordinates
 - to score "C" at each position we need to know neighbours
- side-chains : ignore / average
 - use a score / energy function which averages over all conformations
- neighbour positions : much harder
 - environment description
 - frozen approximation


- an example of profiles (case study)
- we know
 - certain sites are hidden from solvent (middle of protein)
 - only compatible with trp, phe, ile, ... (hydrophobic)
 - some sites are involved in "salt bridges"
 - some secondary structures are preferred by certain residues
- can one count the probabilities of residue types ?
- overview
 - collect list (parameterisation set) of proteins
 - classify sites (18 types)
 - collect probability of each residue type in each site type

- for each site measure the Å² exposed to solvent
- maybe sometimes one has charges / polar groups touching others
 - measure fraction of buried area covered by polar groups
- define environments...


5pt

- 6 environment types
- 3 secondary structure types
 - α , β , others
- = 18 environments
- data collection
 - 16 proteins
 - find environment of each site
 - count
 - how many times does one see residue type *i* in environment *j* = N(*i*,*j*)
 - count how often does one see residue type i = N(i)

- how unusual is a residue *i* in environment *j*? $score(i,j) = \ln\left(\frac{N(i,j)}{N(i)}\right)$
- final result ? a big scoring table

unlikely

likely

Bowie, J.U., Lüthy, R, Eisenberg, D. (1991) Science 253, 164-170

Environment description - application

- given these descriptions use them
- take a protein structure label each site
- take sequence of interest
- for each residue
 - score at each site of protein
- score matrix
- find best path
 - sequence to structure alignment
- final application
 - take protein databank
 - try to align your sequence to every structure

sequence

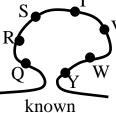
ACDEF

9

Ι

2 3

4

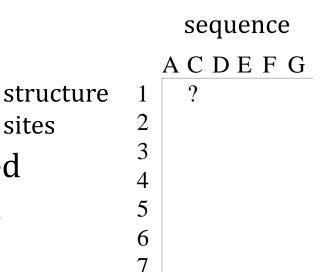

6

structure

sites

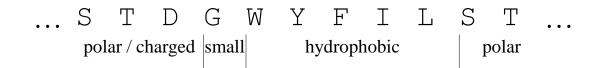
Frozen approximation

- original problem
 - we want to use a score function which
 - sensitive to sequence
 - sensitive to structure
- remember original structure did have a sequence
- belief
 - if two proteins are related, the sequences will have similar properties
 - score with the residues of the original sequence



Frozen approximation

- I can score my sequence in the environment of the known structure
- good
 - the environment is well characterised
 - if my structure has polar residues here, they will go into the scoring function
- bad ?
 - we use the sequence of template (known structure)
 - it may only allow very related residues
 - original aim was to move away from close sequences



sites

Summary so far

- look for closely related templates
- try sequence based methods
- sequence to structure methods are definitely possible
- can I make better scoring schemes ?

Scoring schemes

- how much structural information is hidden in sequence?
- look at a sequence
- I already have labels for sites
 - implicit in substitution matrices
- does the structure contain extra information ? ...

Extra information from structures

Residues exist in a protein for different reasons

- gly is easy to substitute look at diagonal in blosum matrix
- in some turns, gly is essential
 - can only be seen from structure
- cys
 - sometimes a normal hydrophic residue
 - sometimes the geometry says it must form a disulfide bond
 - structure can say if there is another cys near in space

• it should be useful to combine sequence and structure information

Extra information from structures

- Claim hope
 - combination of methods has better signal / noise
- implementation ? easy in principle
 - for each residue *i* in your query sequence
 - for each site *j* in template
 - calculate sequence score s_1 based on profile of i
 - calculate structural score s_2 based on fitting residue type *i* into site *j*
 - score for alignment matrix = $s_1 + k s_2$
 - for some constant *k*

In practice

- most fold recognition programs combine sequence terms and structural scores
- results may or may not be better than best pure sequence methods
- problems..

Problems with clever methods

- Simple sequence searches
 - good models for statistical significance
 - (is a related protein really related ?)
- Remote sequence searches (psi-blast)
 - statistics OK, but less reliable
- Structure / Sequence+structure methods?
 - no good model for scores
 - no good model for statistical significance
 - how will score grow with
 - size of query ?
 - size of alignment?
 - sequence composition ?

Principle

- If you have extra information (structure)
 - must be a good idea to use it

	sequence	structure based
database size	10 ⁶ -10 ⁷	104
	fast	slow
scores	good models	weaker
statistical significance	good or almost good	weaker

Summarise and stop

- Use sequence information when possible
- use adventurous sequence methods when necessary
- use very speculative methods (sequence to structure) when necessary