How many protein folds are there?

- in the protein data bank?
- on earth ?
- possibly?
- What is a protein fold ? definition for today
 - a common shape for proteins
 - do not look at sequence similarity (changes much faster than structure)
 - same order and size of secondary structure elements
 - they evolved from a common parent protein
 - allow for insertions, deletions and some large changes

Typical numbers

- 8 × 10⁴ structures in protein data bank (PDB)
 - outrageous redundancy
- $1\frac{1}{2} \times 10^5$ chains in PDB
 - even more outrageous redundancy

human-checked collections of structures

- 1962 "superfamilies" in SCOP (2009 out of date)
- 2 549 "superfamilies" in CATH

Bayerisch automatic:

• 2×10^4 different structures

Sequences?

• 2×10^7 sequences in "nr" sequence databank

What is a fold ?

- forget sequence identity
 - are these the same fold ?

What is a fold ?

- forget sequence identity
 - are these the same fold ?

What is a family ?

- forget sequence identity
 - are these the same family ?

Operational fold definitions

- 1. use definitions from literature (SCOP / CATH / ..)
 - often very hand-made, non-reproducible, out of date
- 2. second half geometric definitions

How often does one see a new fold ?

- Claim in 1990's
 - mostly when a new structure is solved (80-90%)
 - looks like a structure which was already in databank
- Important:
 - even when you would not expect it from sequence similarity
 - different sequences can still have the same fold
- Quantified ..

new folds per year

- How many new structures per year ?
 - source PDB web page / scop 1.75
 - count number of new "families" each year

Why is this interesting?

- claim (1992) 10³ protein folds*
- if one has a representative for each fold
 - 1. should be able to model all sequences
 - solving structures is no longer necessary
 - find appropriate fold and build model
 - 2. if there is a known structure it is easier to solve a related structure (molecular replacement)
 - common aim
 - try to solve representative of every fold
- Practical ?
 - 10³ or 10⁴ folds might exist not too many

Problem

- How many folds are there ? n_{fold}
- How many do we have in PDB?
 - classify structures n_{fold}^{obs}

How would you approach the problem ? Examples

 statistical – look at distribution of structures
 geometric – how many could there be

Statistical approach

Statistical approach

- n_{fold} folds in nature
- n_{pdb} number of samples (structures in PDB)
- n_{folds}^{pdb} number of different folds in PDB
- $n_{obs}(i)$ number of proteins seen in PDB with fold *i*
- classic problem
 - bag with many coloured balls
 - sampling of balls from bag

Statistical approach

- 1. from protein data bank (PDB)
 - survey all known structures and group them into "folds"
 - n_{fold}^{obs} found PDB (of the n_{fold} folds that exist)
- 2. step
 - visit each *i* of n_{fold}^{obs} folds and count the number of proteins with this fold
 - call this $n_{obs}(i)$ (how many proteins have fold *i*)
- 3. collect distribution data
 - 1. fold 1 has n_1 members, fold 2 has n_2 members... $n_{obs}(1), n_{obs}(2), ...$

statistical approach – very naïve

- say 10^3 classes in nature $n_{fold} = 1\ 000$
- we solve 1 000 structures $n_{pdb} = 1\ 000$
 - would we seen every fold once ?
 - some folds not seen, some seen 10 times
- look at set of numbers
 - $n_{obs}(1), n_{obs}(2), ...$
 - if $n_{fold} = n_{pdb}$
 - $\langle n_{obs}(i) \rangle = 1$ (not so helpful)
 - variance will be big (numbers from 0 to 10)

 $\langle x \rangle$ mean of x

statistical approach – very naïve

- 10^6 classes in nature $n_{fold} = 10^6$
- we have 10³ structures
- all structures should be different

- multinomial / categorical distribution $P(n_{obs}) = {n_{pdb} \choose n_{obs}} \left(\frac{1}{n_{fold}}\right)^{n_{obs}} \left(1 - \frac{1}{n_{fold}}\right)^{n_{pdb} - n_{obs}}$
- look at PDB structures
- put in classes
- look at distribution

Results of naïve approach

• 450 classes in one estimate

• some are rare

Wolf, Y.I., Grishin, N.V., Koonin, E.V. (2000) J. Mol. Biol. 299, 897-905

statistical approach - better

- Use some functional form for distribution over protein folds
 - stretched exponential $P(\lambda_i) = c \exp\left(-\alpha \lambda_i^{\beta}\right)$
 - λ_i relative probability of fold *i*
 - α , β constants to be fit

statistical approach - better

• general form of distribution

•
$$P(\lambda_i, n_{obs}) = {n_{pdb} \choose n_{obs}} (\lambda_i)^{n_{obs}} (1 - \lambda_i)^{n_{pdb} - n_{obs}}$$

- λ_i
 - probability of fold (how many balls of a colour were in my bag at start)
 - values are not known
 - we just see a set of relative λ_i
- sort the list of populations of classes and fit parameters

statistical version – results

- 3 756 folds
 - used folds defined by a literature classification
 - tried other statistical models
 - other definitions lead to different numbers
- 1 000 folds
 - different definitions, similar method
 - about 300 known (data from 2 000)

Govindarajan, S, Recabarren, R, Goldstein, (1999) R.A. Proteins, 35, 408-414 Wolf, Y.I., Grishin, N.V., Koonin, E.V. (2000) J. Mol. Biol. 299, 897-905

statistical - summary

- Estimates vary from 1 000 to 4 000 (and more)
 - few estimates of 8 000

Problems

- what is distribution of proteins over folds ?
 - leads to question .. why?
- is the PDB a fair sampling ? Lots of
 - human proteins
 - structural genomics proteins
 - soluble proteins
 - proteins related to diseases (in host or agent)
 - proteins are easier if they are similar to a known one

geometric approach

How many ways can a chain fold?

- rules
 - compact
 - atoms do not hit each other
- less obvious
 - chain direction usually reverses
 - α -helix after 2 residues
 - β-strand after about 10 residues (typical)

Mission

- sample from possible chains fulfilling these conditions
 - can you sample from *x*, *y*, *z*? Not easily
- work in a different space

cosine transform - diversion

- Fourier transform well known
 - go from real space to frequency space
 - or from frequency space to real
- "cosine transform" similar
 - work with real (not imaginary) parts
- coordinate filtering example

Example transform

- 1ctf ribosomal protein
 - transform \rightarrow frequencies
 - keep only 22, 11 and 6 points (frequency space)
 - transform back to real space

Sampling conformations

- How can you sample wobbly lines (3 dimensions)?
 - not easy in real space
- method
 - sample in frequency space
 - convert to real space (one dimension *x*)

$$x_n = \sum_{k=0}^{N-1} c_k \hat{x}_k \cos\left[\frac{(2j+1)k\pi}{2N}\right]$$

• in more detail

$$x_{j} = \sum_{k=0}^{N-1} c_{k} \hat{x}_{k} \cos\left[\frac{(2j+1)k\pi}{2N}\right]$$

- x_n the *n*th coordinate (what we want in real space)
- c_k usually 1 (not interesting)
- \hat{x}_k coefficient for the *k* th frequency
- *N* how many samples (amount of detail / resolution)

Sampling from real coordinates

•
$$x_j = \sum_{k=0}^{N-1} c_k \hat{x}_k \cos\left[\frac{(2j+1)k\pi}{2N}\right]$$

decide on N (level of detail) and n_r number residues
while (step < max_step)</pre>

pick random \hat{x}_k , \hat{y}_k , \hat{z}_k

(for lower frequencies, others set to zero) convert to real coordinates, scale for n_r check for overlap, repair / discard check for similarity to stored structure, repair/discard save coordinates

Finding new structures

Estimating number of folds

- parameters
 - definition of similarity ρ
 - number of points in transform N ^a
- fit to slightly arbitrary form

Crippen, G.M., & Maiorov, V. (1995) J. Mol. Biol. 252, 144-151

How many folds ?

- as many as you want
 - 10³ smaller structures (50 residues)
 - very big numbers for larger structures
- many structures generated are similar to natural ones
- many may not be possible
 - representation a bit crude, does not capture enough detail
- may have found some structures that have not yet been discovered

agree with nature ?

• some look like real proteins

agree with nature ?

- would you expect to find the artificial structures in PDB?
 - many more structures since 1995
 - PDB is a sample of structures from nature
- would you expect to find the structures in nature ?
 - evolution:
 - mutate
 - sequence changes maybe protein functions
 - sequence + structure change
 - almost certainly does not work (you die)
 - very hard to visit all possible structures

Change original question

Now three questions

- 1. how many folds in PDB?
 - we have the structures mainly a question of definition
- 2. how many folds in nature ?
 - biology / chemistry /evolution question
- 3. how many folds could there be ?

summarise 1

- How many folds why does it matter ?
 - modelling / structure / function prediction
 - finding evolutionary history
- Folds are not well defined
- Similar folds are not easy to recognise
- Statistical methods many variations one here
 - all use an arbitrary definition of fold
 - survey observed folds + distribution of proteins over these folds
 - more information not discussed here
 - many sequences in databanks
 - how are they distributed over folds ?

summarise 2

geometric approach

- pure sampling (not conclusive)
- avoids problem with sampling in real space
- has suggested new folds chemically plausible
- Is it likely that nature has visited all reasonable conformations ?
 - difficulty in making a new stable protein shape
 - sequence mutations explore sequences compatible with functioning protein
 - structural changes usually deadly