
WS 2011/12 Übung zu Anwendungen der Strukturanalyse

Übung: Secondary Structure Prediction

Exercise: 28 Nov, 5 Dec 2011

Assignment due date: 11 Dec 2011

It is likely that this Übung will really require the allocated two weeks. Don't lose too much time on the

first task during exercise time in the student pool, it is advisable to start on the second and third tasks

once you are confident that you understand the first task. Please e-mail (ast_uebung [at] zbh.uni-

hamburg.de) a brief written report (in .pdf or .txt plaintext format) answering the following questions

together with your source code for the third task.

Each person should hand in their own report, no group submissions please.

Tasks:

1. In the lectures, we considered neural networks which use a "logistic" function for switching. There is

also a strong school of thought based on other activation functions. Before considering neural

networks applied to proteins and secondary structure, we consider a purely theoretical example, based

on a simpler, linear classifier.

Frank Rosenblatt's perceptron can be seen as a simple kind of feed-forward neural network. It is a

linear classifier mapping its input vector x to a linear function f x =∑
i

wi x i−b , where w is a vector

of weights wi and b is a bias. This version of an artificial neuron can be used as a binary classifier

using the sign of f(x) as decision basis. The output is not f(x), but 1 or -1.

In this exercise you will use a slightly modified model that calculates the weighted sum of two inputs

x1, x2 and compares it to a threshold b.

If the weighted sum is greater than the threshold then the neuron fires +1 otherwise -1, i.e. either y =

+1 or y = -1. This is essentially the same as if you used Rosenblatt's perceptron as a binary classifier.

The illustrated neuron can be trained (or it can be made learned) through error correction from training

examples. If d(k) is the desired and y(k) is the obtained output of training example k, then the error is

given by e(k) = d(k) - y(k). The synaptic weight wi changes during the learning procedure according to

the learning rule wi(k+1) = wi (k) + ηe(k)xi(k), where η is the learning rate.

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [1 / 6]

mailto:ast_uebung@zbh.uni-hamburg.de
mailto:ast_uebung@zbh.uni-hamburg.de

 The following training set specifies the truth table for the logic AND operator:

x1(k) x2(k) d(k) k

1 1 1 1

-1 1 -1 2

-1 -1 -1 3

1 -1 -1 4

Given the initial conditions w1 = -0.2, w2 = +0.1, b = +0.2 and η = +0.1, find the synaptic weights that

solve the problem.

2. The aim is to try out secondary structure prediction programs on some interesting examples, where one

knows the answer. The answers come from:

* STRIDE or DSSP – use coordinates to estimate the secondary structure.

*AUTHOR ASSIGNMENTS - whatever the authors think is correct after looking at their structures

The question is, how close are the predictions (GOR-IV, HNN, JPRED, PHD) to the estimates based

on the structure. The examples here use public web servers. These are all free, but do remember that

somebody has built the server and provided the computer time. Be careful not to flood any of the

servers with requests.

There are two weeks allocated for this Übung. Note that some of the servers listed below do not send

results back instantly. It might be safe to submit queries in the first week and look at their answers later

(next week).

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [2 / 6]

Have a look at the following three protein pairs:

Protein 1 Protein 2 identical sequence

1ial (292-

300)

1pky (413-

421)

KGVVPQLVK

1cgu (121-

127)

1bgl (835-

841)

LITTAHA

1efv (119-

124)

1p04 (114-

119)

LLPRVA

You might remember few of the proteins from the lectures. There are three pairs of proteins with

known structure. There is an identical chunk of sequence in each of three sequences which adopts a

different secondary structure in each protein.

For all three pairs of proteins, retrieve their (single-lettered) sequences and tertiary structures (PDB-

files) from the RCSB protein data bank (PDB) found at www.pdb.org or www.rcsb.org.

Now use GOR IV, information theory based method, (http://npsa-pbil.ibcp.fr/ and follow the link to

"GOR IV") and HNN (same address as GOR IV), based on a hierarchical neural network to predict the

secondary structures. Compare the prediction results to the secondary structure assignment based on

the 3D coordinates, for example made by the STRIDE services (webclu.bio.wzw.tum.de/stride/).

Compare also the DSSP and STRIDE assignments against each other and against the "author

approved" assignments (all found under the “Sequence Details” tab at www.rcsb.org). Note that the

PDB website includes the DSSP and STRIDE assignments (in the Sequence tab, then “Add

Annotations”).

In your report, write about:

- the differences and similarities in assignments of the complete sequences and especially in the

ambiguous parts.

- Do the servers make the same prediction for each member of the protein pair? Why (not)? Describe

your observations, compare and discuss them.

- The servers often give an estimate of confidence or reliability. How do they treat the regions where

the same sequence sometimes adopts different secondary structure?

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [3 / 6]

http://www.rcsb.org/
http://webclu.bio.wzw.tum.de/stride/
http://npsa-pbil.ibcp.fr/

- If you are brave and a little patient (30 – 60 min.), you should include predictions from the JPRED

http://www.compbio.dundee.ac.uk/www-jpred/ or PHD http://www.predictprotein.org/

services in your report. The PHD server requires an unfriendly, but harmless registration. Both

servers take multiple sequence alignments into account and reflect the state of art. Why might these

methods make not much sense here?

3. Investigate the following hypothesis:

“The number of secondary structure elements found in random sequences is significantly lower

and/or their length is significantly shorter than in protein primary structures (with the same

amino acid composition).”

If this hypothesis is true, secondary structure prediction could be used as a starting point to find

structural genes coding for proteins.

The first part of this task is to write a small program to generate random protein sequences, and then

present a way the hypothesis could be tested quantitatively using this program. You should perform

your proposed test on some examples and present your findings for these example tests.

Please hand in your source code as a separate file together with instructions for compiling it if

necessary (for example a Makefile) together with your answers. If you are unable to write this program

there is a section at the end describing the use of a pre-made program for generating random

sequences.

Writing your program for generating random sequences

You should try and write your own program to generate random sequences. You may use any language

you like, but the program should be runnable in the student pool under Linux.

The plan is to shuffle a given protein sequence by swapping amino acids, generating a permutation of

the original sequence. A shuffled sequence naturally has the same amino acid composition as the

original sequence. One of the oldest and simplest algorithms for shuffling a sequence is the

Fisher-Yates shuffle (sometimes also called the Knuth shuffle), which is the algorithm you should use

here.

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [4 / 6]

http://www.predictprotein.org/
http://www.compbio.dundee.ac.uk/~www-jpred

The Fisher-Yates shuffle in pseudocode for an array a[] of n elements with indices from 0 to n-1:

for i from n – 1 downto 1 (1 ≤ i ≤ n-1)

 j = random integer in range [0, i] (0 ≤ j ≤ i)

 swap a[i], a[j]

Your program should take the number of shuffled sequences to output and the original sequence from

the command-line. Example output should be (assuming you called your program shuffle):

$./shuffle 4 abc

bac

abc

cba

acb

You should test that your program generates all permutations with equal probability. A simple test is

the following:

./shuffle 100000 abc | sort | uniq -c

All six possible permutations of the string “abc” should occur the same number of times on average.

Also make sure that you seed your random number generator (the function srand() in C) so that

calling your program multiple times won't generate the same set of permuted sequences.

If you use a language like C, make sure that your program runs under valgrind (a program that can

find certain kinds of errors while running your program) without errors. You can run your program

under valgrind like so:

valgrind ./shuffle 4 abc

Using an existing program for generating random sequences

Only read this part if you are unable to write your own program.

Under ‘/home/torda/uebung_sec_struct/’ directory, you can find a little command-line tool that

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [5 / 6]

takes a protein sequence and produces (pseudo) random sequences. These pseudo-random sequences

are of the same composition and length as the input sequence, but the order of the amino acids has

changed.

In the text file /home/torda/uebung_sec_struct/data/1tu7_random, you can find random

sequences derived from the primary structure of the major cytosolic Glutathione-S-transferase from the

parasitic nematode Onchocerca volvulus, the causing organism of river blindness.

But, of course, you are free to use the command-line tool on your own to produce your own random

sequences. To do so you can launch the tool by typing, for example:

/home/torda/uebung_sec_struct/bin/shuffle_seq.x 3 MSYKLTYFSIRGLAEP

at command prompt (e.g. konsole). This would print the original sequence and three random sequences

to stdout. To save this output to a file, use the redirection operator > random_seq.out after your typed

command to store the output in the file random_seq.out. You can find the source code in the src

subdirectory.1

1 Code originally written by Gundolf Schenk

/home/mcm/zbh/ast-ueb2/2-prot-sec-struct-pred.odt [6 / 6]

