NMR (Nuclear Magnetic Resonance Spectroscopy)

- literature / background (already in Stine)
 - Thomas James chapter http://www.biophysics.org/img/James.T.pdf
 - Ferentz, A.E. and Wagner, G., Q. Rev. Biophys, 33, 29-65
 (2000)

current standing

- ≈ 13 % of all current structures solved by NMR
- about 1/3 of smaller structures

Next 3 Weeks

- Background to NMR chemistry
- Calculating structures
 - distance geometry
 - problems with structures

History

- younger field than X-ray
 - one Nobel prize in early 90's (Ernst technical)
 - ½ Nobel prize 2002 (Wüthrich)
- first real protein structure about 1985 or 1986

NMR from our viewpoint

- a way to get structures
- can provide information on
 - dynamics, stability
 - interactions (other proteins, small molecules)
- we concentrate on structural aspects

Overview - how we get coordinates

- protein in solution
- record spectra
- assign peaks to ¹H, ¹³C, ¹⁵N nuclei
- record some more spectra
 - distance information (mostly)
 - some internal angles
- reconstruct structure

Nuclei have spin

- have a charge and act like magnets
- put them in a field and they will align with it

- now apply a magnetic field
 - they "precess" around the field
 - two possible states

 B_0 is applied field ν speed of rotation (many MHz / 10^6 Hz)

Do nuclei like fighting the field?

- is a nucleus really happy facing the wrong way?
- what if we push it the wrong way?
 - wants to get to low energy state emits a photon

energy difference very small

What NMR records

Is this useful?

- record some photons (radio freq) no information (yet)
- what if the nuclei emit slightly different frequency energy?

- what determines the frequency?
 - energy difference
 - field strength

- B₀ applied field
- υ Larmor frequency

- γ magic number for nucleus (gyromagnetic ratio) purely empirical
- What is the real field that a nucleus sees?
- mixture of outside field and local environment

blue H is different to green H so frequency should change

A possible toy spectrum

different atoms / nuclei give different peaks

• a more interesting spectrum ...

chemical shift / real spectrum

- some protein
 - 100's ¹H
- Scales?

• all peaks resonating 100 to 800 MHz (10⁹ Hz)

• whole spectrum 10⁴ Hz

100 Hz

Important nuclei (spin 1/2)

nucleus	sensitivity	notes
¹ H	1	cheap and natural
¹³ C	1.6×10^{-2}	expensive, but only 1% of natural abundance
^{15}N	10^{-3}	bit less expensive, 0.4 % natural abundance
³¹ P	7×10^{-2}	fun for DNA and other PO ₄ chemistry

- but the natural isotopes are ¹²C and ¹⁴N
 - (usually) these isotopes require labelling
- other nuclei? ...

A simple spectrum

- an example protein (ubiquitin)
 - lots of peaks, but not useless
- could already
 - look at ligand binding
 - pk_a of residues

no real structural information yet

Recording a spectrum

sort out frequencies with Fourier transform

Raw data and Fourier transforms

• raw data will be simple periodic functions + decay

Assignment

- Peaks correspond to ¹H / ¹³C from specific atoms
- structural information given by peaks
 - more later
- Assignment which peaks correspond to which atoms
- Assumption
 - we know exactly which atoms are present
 - sequence of protein known

Assignment

- Which peaks correspond to which atoms?
 - location / chemical shift
 - with which atoms are you bonded?
 - which atoms must you be near in space
- Example
 - find a methyl peak
 - connected to a methyne
- R another methyne
- connected to a methyl & another methyne
- ...
- mostly automated

To calculate structures?

1. distance information

2. dihedral / torsion angle information

Distance information / the NOE

- most important
 - an effect which depends on how close in space nuclei are
 - NOE $\propto r^{-6}$
 - usually only up to about 5 6 Å
- story
 - two spins' dipoles interact
 - saturating one spin affects populations of other spin
- who wants an explanation?
 - cross relaxation phenomenon

- red relaxing (jumping to lower energy) affects black
- can one create this situation ?

Cross relaxation and the NOE

- now, the population difference is bigger than normal
 - bigger signal
- record a normal spectrum
 - red is not there
 - black is "enhanced"
- via another mechanism
 - population difference can become smaller
- only happens if nuclei are very close in space

Other structural information

- NOE information about short (< 5 or 6 Å) distances
- there is more angles
 - mainly J coupling

Amide NH to H^α coupling

$^{3}J_{HN\alpha}$ coupling

formalised as

$$^{3}J_{HN^{\alpha}} = 6.4\cos^{2}\theta - 1.4\cos\theta + 1.9$$

Problems later

Amide NH to H^{α} coupling

can help distinguish α from β

not always seen (exchange / motion)

- NH not always present
- other angles?
 - other vicinal protons
 - C^{α} to C^{β}

Problems with J-coupling

1. we have a formula

$$^{3}J_{HN^{\alpha}} = 6.4\cos^{2}\theta - 1.4\cos\theta + 1.9$$

- most of the time, there is more than one solution
- only use very big J values

2. dynamics

more serious than they appear!

look around -90°

Practical NMR

- We have some basic methods
- Real NMR
 - more techniques
 - identifying specific kinds of atom
 - spreading peaks out
- Briefly mention the most important...
 - 2D NMR

2D NMR

- two reasons
 - 1. spread spectrum out
 - resolve peaks / remove overlap
 - 2. add information

2D spectra information

What do the off-diagonal peaks mean?

depends on spectrum

Example 1

- COSY (correlated spectroscopy)
- peaks indicate J-coupling
- look at spectrum and quickly see which peaks are connected

Example 2

- NOESY (NOE ...)
- peaks indicate NOE
- corresponding nuclei close in space

Two dimensional NOE spectra example

Information summary

phenomenon	assignments	structure
chemical shift	important	not used
spin-spin (<i>J</i>) coupling	important	torsion angles
NOE / distances	important	main information

- more spectroscopy
 - filtering according to chemistry, atom types
 - *n*-dimensional methods
- structural information
 - labels for broadening / shifting peaks
 - orientation of bonds to reference ...

Structures from NMR data

To come

- Distances in 2 and 3 D
- Distance geometry
 - 2 approaches
- Restrained molecular dynamics (MD)

Available information

- distances
 - short (5 to 6 Å)
 - incomplete
- some dihedral / torsion angles
- does this define a structure?
 - strictly no
 - with chemical information?
 - still not

Determining distances (ideal)

• 2 points 1 distance

 $\begin{array}{ccc}
\bullet & & \bullet \\
i & d_{ij} & j
\end{array}$

- 3 points 3 distances...
 - think of $3N_{atom}$ distances
 - remember $N_{atom} \approx 10 \text{ or } 20 N_{res}$

Underdetermined distances

- think in terms of triangles ...
 - d_{ik} < 6 Å, d_{jk} < 6 Å
 - where is k?
- a few more distances...
 - more and more distances are useful

Impossible distances

No overlap?

- experimental error
- nowhere for k to go

Real data

For N residue protein, maybe 5 N_{res} or 10 N_{res}

- want more like $3N_{atom}$ (30 60 N_{res}) distances if perfect
 - needs much more data…
 - lots of chemical data

Mission

- gather all experimental data
- mix in chemical data
- make all distance information as tight as possible
- put an upper bound on the distance between every pair of points
- put a lower bound on every distance (less important)
- somehow generate coordinates
- start with toys and triangles

Structures from distance information

Start in two dimensions...

- ein freundliches Dreieck
 - $d_{ij}=11$ $d_{ik}=13$ $d_{jk}=16$
- fix *i*, put *j* on x-axis and make coordinates
- solve analytically

Underdetermined data

- $d_{ij}=11$ $d_{ik}=13$ $d_{jk}=12-20$
 - more like NMR data
- unique solution?
 - no

Impossible data

• distance too big $d_{ii}=11$ $d_{ik}=13$ $d_{ik}=25$

•
$$d_{ij}=11$$
 $d_{ik}=13$ $d_{jk}=1$

no 3D structure

Gathering data

- add in chemistry
- use to get more
 - mix chemistry + measurements
- what comes easily from chemistry?

Gather as much data as possible

Simple, geometric information

- bonds standard
- angles standard
- simple distances from bond angles
- dihedral / torsion angles

$$d_{hk}^{2} = (d_{ij} - d_{hi}\cos\theta_{hij} - d_{jk}\cos\theta_{ijk})^{2} + (d_{hi}\sin\theta_{hij} - d_{jk}\sin\theta_{ijk}\cos\tau_{hijk})^{2} + (d_{jk}\sin\tau_{hijk})^{2}$$

- minimum
- \bullet $\tau = \pi$
 - maximum

How to get more distance information

- impose some distance limits generally
- intuitively
 - stretch out a protein and there is a limit to length

??

can we formalise this?

More general / triangle inequality

What limits can be worked out?

- upper bound $d_{ik} \le d_{ij} + d_{ik}$
- lower bound
 - $d_{jk} \ge |d_{ij} d_{ik}|$

Where to use triangle inequality

we could avoid some ugly trigonometry

more general

Most general triangle bound inequality

- triangle bound should be satisfied by any three points
- chemists
 - triangle bound smoothing
- informatik
 - all points shortest path problem

All points shortest path (Floyd)

	A	В	C	D	E
A		4			
В			3	5	
C				2	10
D					3
E					

	A	В	C	D	E
A		4	max	max	max
В			3	5	max
C				2	10
D					3
E					

Bound smoothing / Floyd

	A	В	C	D	E
A		4	max	max	max
В			3	5	max
C				2	10
D					3
E					

Running time

• $O(n^3)$

	A	В	C	D	E
A		4	7	9	12
В			3	5	8
C				2	5
D					3
E					

Distance matrix so far

- we can build a distance matrix of upper limits
 - consistent with all bonds and angles and other information
- can do the same for lower bounds
 - every pair of atoms
 - invent some lower bound (atomic radii)

Does this define a structure?

- almost certainly not
 - still no way to get to a 3D model

From distances to coordinates

How would you build coordinates from distances

- stepwise?
 - error prone, errors add
- history
 - early 80's
 - methods which are tolerant of errors
 - metric matrix method

Metric matrix method

- get best upper bounds
- get best lower bounds
 - guess distances between
 - → trial distance matrix
 - convert to centre of mass matrix (metric matrix)
 - magic conversion to coordinates
 - if metric matrix has three positive eigenvalues
 - error free coordinates
- real coordinates
 - lots of errors
 - initial coordinates not healthy
 - refine

Chirality

2D version

- can *not* be rotated on to each other
- can not be distinguished by distances

3D

- chirality is random
- problem?no
 - flip all coordinates and check
- local chirality
 - mixture of good and bad
 - difficult to fix

Other distance geometry

Can we adjust coordinates directly?

Can we work with angles?

many fewer angles than atoms

Distances and angles

each distance may depend on many included angles

high dimensional space of angles...

Distances and angles

moving one angle affects one distance simply

- one angle is very important for a
 - short range distance

Optimisation Strategy

- start
 - concentrate on distances with few angles in between
 - shorter distances become correct
- add in more distances
 - re-optimise
- add in more distances
 - ...

Variable target function

approach of Braun and Gō

Stepwise variable target function method

Collect experimental data

distan	ce residu	e atom	residue	atom	distance
in	1	1	2	2	in space
seque	nce				(Å)
1	5	H^{α}	6	H^N	4.0
0	8	H^{α}	8	H^γ	4.4
80	2	H^{α}	82	H^N	4.5
2	3	H^{α}	5	\mathbf{H}^{γ}	5.0
1	7	\mathbf{H}^{eta}	8	\mathbf{H}^{γ}	3.8
0	3	H^{lpha}	3	H^{N}	5.0

• Sort according to distance in sequence

Stepwise variable target function method

distance in	residue 1	atom 1	residue 2	atom 2	distance in space
sequence	2				(Å)
0	0	ΙΙα	O	ΤΤγ	1 1
0	8	H^{α}	8	\mathbf{H}^{γ}	4.4
0	3	H^{α}	3	H^N	5.0
1	5	\mathbf{H}^{lpha}	6	H^N	4.0
1	7	H^{eta}	8	\mathbf{H}^{γ}	3.8
2	3	\mathbf{H}^{lpha}	5	\mathbf{H}^{γ}	5.0
• • •					
80	2	H^{α}	82	H^N	4.5
• • •	•••				

Stepwise variable target function method

distance in sequence	1	atom 1	residue 2	atom 2	distance in space (Å)	1 st	2 nd	3 rd	later
0	8	H^{α}	8	\mathbf{H}^{γ}	4.4	ı	1	1	ı
0	3	\mathbf{H}^{α}	3	H^N	5.0	ţ			
1	5	H^{α}	6	H^N	4.0				
1	7	H^{β}	8	\mathbf{H}^{γ}	3.8		Ţ		
2	3	H^{α}	5	\mathbf{H}^{γ}	5.0			↓	
• • •									
80	2	H^{α}	82	H^N	4.5				ļ
• • •	• • •								

Hope..

Variable target function vs metric matrix

- metric matrix vs variable target function
 - proponents of both
- variable target function probably more popular
 - no problems with chirality

Real implementations of distance geometry

- not small programs
- what kind of input would they like?
 - list of protein sequence
 - set of distances
- most of code
 - libraries of standard amino acids
 - code to do geometry and work with standard geometries
- other information
 - angle restraints
 - convert to distances for metric matrix
 - natural for variable target function

Output from programs

Structure impossible?

- program dies or
- best possible solution

Structure not determined?

set of possible conformations
 (10 to 100)

example 1sm7.pdb

Lots of models in a PDB file

- big difference compared to most x-ray coordinates
- typical
 - ends (C- and N-termini) badly defined
 - loops poorly defined
- spectroscopists say this reflects mobility
- problems with many models
 - difficult to work with
 - arbitrary which to select for calculations
 - averaging usually not a good idea
- Is this the absolute truth? No.
 - number of models arbitrary
 - different methods (programs /details) give different results

Are we finished with making coordinates?

- structures may not be well defined
- can they be improved? probably
 - restrained molecular dynamics (more next semester)
- normal MD $E_{phys}(\vec{r}) = bonds + angles + electrostatics ...$
- restrained MD $E_{total}(\vec{r}) = E_{phys}(\vec{r}) + E_{restr}(\vec{r})$
- and... $E_{restr} = \sum_{i} k_i (r_i^{struct} r_i^{measured})^2$
- where *i* refers to the distance restraint
- Mission to minimise E_{total}
- result?
- structures
 - agree with restraints + low energy

What else can one do with NMR?

NMR sensitive to dynamics

Timescales

- for phenomena where peaks are separated by Hz
 - timescale are Hz
- fast chemistry (small molecules drift in and out)
 - completely averaged
- very special to NMR
 - relaxation and dynamics...

What makes a nucleus relax?

What makes a nucleus relax?

Is this really spontaneous?

no (think of metastable state)

What will make it relax?

- movement
 - overall
 - local
- Certain frequencies most important
- low frequency
- ω
- 2ω

NMR Relaxation

- different phenomena
 - NOE, T₁, T₂, ...
 - different sensitivities to low frequency, ω , 2ω
 - plus, we have ω^{13} C, 15 N, 1 H
- different sites in molecule have different motions
- define τ_c characteristic time of motion
- example, 64 residue protein
 - overall τ_c 5 ns
 - individual residues...
- do we see this in PDB files?
 - no

NMR last words (almost)

- NMR good for
 - dynamics
 - deuterium exchange
 - screening / binding / ligands

timescales

very slow	separate peaks	very different
·		conformations
	NOE disappears	
	poorly determined	
	structure	
	broad peaks	solvent exchange
		sidechains turning
fast	averaged sharp peaks	fast side chain rotation (methyls) ligands on / off

Generating Structures Summary

- Information from NMR
 - is not complete
 - may be conflicting methods must handle these problems
- Metric Matrix method
 - use distance information directly
 - convert ³*J* (angle information) to distances
 - add chemical information (bonds, angles)
- Variable target function
 - angles and bonds are fixed will generate good chemical geometry
 - attempts to solve an optimisation problem with a smoothing procedure (remove local minima and gradually add them)