Protein stability

Our model

Andrew Torda, Wintersemester 2011 / 2012, GST

unfolded

non-native

- denaturing $(-\Delta G)$
- for a stable protein
 - $\Delta G_{N\to D} > 0$

Protein Stability

- what is known empirically
- definitions
- a stability surprise
- some explanations
- weaknesses of models

ΔG convention

- $\Delta G_{folding} = -\Delta g_{unfolding}$
- define $\Delta G > 0$ as stable so reaction is
 - folded → unfolded (native → denatured)
- some books and papers work with other convention

Empiricism / rules

- more positive ΔG , more stable the protein
- most proteins are marginally stable ($\Delta G \approx 0$)
- proteins can be denatured by
 - pH, concentrated ions, temperature, solvent, surface area
- too hot?
 - eggs cook, people die (many reasons)
- some bacteria live at 373 K their proteins are not denatured

Rules

- nature cares about free energy ΔG
 - usually measure free energy
 - $\Delta G = \Delta H T\Delta S$
 - *G* free energy (Gibbs)
 - H enthalpy potential energy including volume effects U + PV
 - *S* entropy
- chemistry books normally work with ΔG° standard free energy

measurement

Folded / Unfolded

- how to measure
 - spectroscopy
 - absorbance (optical / UV spectroscopy)
 - rotational (CD / ORD)
 - fluorescence
 - NMR
 - activity
 - ...
- usually two states (native / denatured) that somehow look different

Energies

- calorimetry
- measurements of [native] / [denatured]

Two state model

• model requires an energy barrier

- what if $\Delta G = 0$?
 - ½ molecules folded
 - ½ molecules denatured

First picture of stability

- what holds a protein together?
 - forces between atoms
 - bonds, electrostatic, Lennard-Jones,
 - atoms also repel
- cannot be so simple
 - atoms would just fall into correct position
 - ΔG would always be very positive
 - missing?
 - effect of solvent
- in native structure there are "correct contacts"

Balance of energy terms

• in native structure there are correct contacts native

One atom in native structure

interacts with correct neighbours

In the non-native structures there are also contacts

- atom interacts with "wrong" neighbours
- balance of forces
- stability has to do with
 - energy / enthalpy $H_{\text{native}} H_{\text{denatured}}$

Balance of energy terms

More forces

- how many polar / charged groups are there?
 - NH + CO backbone every residue
 - polar / charged sidechains
- all can interact with water

Explain denaturing

- Why do these denature a protein? pH, concentrated ions, temperature, solvent, surface area
- pH? change the charge on some groups, remove favourable interactions
- ions? provide competition for charges, H-bonds

$$\begin{bmatrix} NH_2 \\ H_2N & NH_2 \end{bmatrix}^+ H_2N & NH_2$$

- temperature? add kinetic energy, push particles out of minima
- solvent? remove favourable protein-solvent interactions
- surface area? surface tension / protein air interactions

Entropy version 1

$$\Delta G = \Delta H - T \Delta S$$

- considered ΔH terms, what is $\Delta S_{folded-unfolded}$?
 - entropy depends on the number of conformations $(k \ln \Omega)$ or better

- as a protein unfolds
 - number of conformations ↑
 - entropy goes ↑
- ΔS will favour denaturing

Balance of forces version 1

$$\Delta G = \Delta H - T \Delta S$$

proteins should melt / cook/ fall apart if you heat them

• ribonuclease unfolding

Entropy version 2

$$\Delta G = \Delta H - T \Delta S$$

- but can we treat ΔS as a constant? Is it T dependent?
- meaning of $\Delta S_{folded-unfolded}$
- roughly how does the number of states change?

$$\Delta S = S_{folded} - S_{unfolded}$$
$$= k \left(\ln \Omega_{folded} - \ln \Omega_{unfolded} \right)$$

$$= k \ln \frac{\Omega_{folded}}{\Omega_{unfolded}}$$

• Ω_{folded} definitely goes up with temperature

Entropy change on unfolding

- depending on heat capacity one has a curve like
- radical consequence
 - entropy might make proteins less stable as you cool them

- can one cook an egg by cooling it?
- combining these properties

protein stability

• what is seen / claimed?

Old measurements

- protein stability (ΔG) is a balance of energy and entropy
- note sign convention

$$\Delta G = \Delta H - T \Delta S$$

- difference of two large numbers comes to nearly zero
- what might you expect?

lysozyme RNAase chymotrypsin myoglobin cytochrome C

final version

- claim.. for typical protein
- bold line -measured
- dashed extrapolate
- implies
- plies
 you can denature
 protein by cooling you can denature (cook egg by freezing?)
- what is measured?

free energy experimental

- Looks like there will be cold denaturing
 - below zero
- curve is different for all proteins

does this prove "cold denaturing"?

Cold denaturing

- controversial
- often predicted to happen below 0°
 - hard to measure

Entropy and Enthalpy Summary / Consequences

Enthalpy *H* / potential energy

will always favour folding

Entropy

will always favour unfolding

Debatable

- how much does entropy change with temperature?
- depends on heat capacity of protein
- Two state model? native → denatured
 - what does $\Delta G = 0$ mean?
 - definitely too simple proteins partially unfold

proteins and systems

- energy
 - energy of native state is important but
 - energy of denatured state is equally important
- consequence
 - naïve optimisation may not work
 - you propose to make a protein more stable by putting in residues with opposite charge
 - lowers energy of native structure
 - also lowers energy of non-native structure

proteins and systems

- you are always looking at $\Delta G = G_{native} G_{denatured}$
- nobody knows what the denatured state looks like

not just for temperature

cannot be measured

- chemical denaturant?
 - maybe simply binds to unfolded protein
 - lower energy more stable

water is important (water entropy)

- unfolding a protein changes water order
- correct way to look at system is

$$\Delta \ G = G_{native_protein+water} - G_{denatured_protein+water}$$

next ... motions in proteins

Motions, frequencies and proteins

- Motions and dynamics in proteins
 - how big are they?
 - how fast are they?
- Examples
- Types
 - without barriers
 - with barriers
- Energies
 - equal probability
 - not equal probability

Nasty question .. answered later

- I have motions in a protein at T=273 (cold)
- heat protein to 300 K
 - do the frequencies of motions change?

Protein motion examples

- Early evidence that motions are important
 - myoglobin structure (1962)
 - carries O₂, maybe first protein structure solved
 - no channel could be found for O₂ to reach haem group
 - could only be explained if parts of protein move and

open up

- many similar stories
- activity of protein cannot be explained by simple structure

Protein motion examples

- Fundamental arguments
 - bonds, angles vibrate, rotate
 - basis of many kinds of spectroscopy
 - infra red, fluorescence, NMR, ...

- More fundamental arguments
 - at T = 0 everything dead

- at T = 300 (this room) everything has kinetic energy
 - everything is moving
 - meaning of temperature ? T, E_{kin} ?

•
$$\frac{1}{2}mv^2$$

E_{kin} kinetic energyT temperature

Energy surfaces

run around on an energy surface

- energy surface and energy should determine motions
 - too complicated
 - energy surface not well known
- work with simpler models

Motions with or without barriers

- Without barriers
 - one state + fluctuations

- With a barrier
 - two states

Harmonic oscillators

- find them everywhere..
 - potential energy = kx^2
 - what is the frequency of motion ω ?

equency of motion
$$\omega$$
?
$$x(t) = A\cos(\omega t + \delta)$$

- *A* is the amplitude
- ω is the frequency
- δ is phase
- Detour .. why does this make sense?

Harmonic oscillator

$$m\frac{d^2x}{dt^2} + kx = 0$$

$$F = -kx$$

$$ma = -kx$$

$$m\ddot{x} = -kx$$

say
$$\omega^2 = \frac{k}{m}$$
 so $\omega = \left(\frac{k}{m}\right)^{1/2}$

$$m\frac{d^2x}{dt^2} = -kx$$

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

- has a solution.. $x(t) = A\cos(\omega t + \delta)$
 - can I convince you?

Is the solution valid? $x(t) = A \cos(\omega t + \delta)$

$$\frac{dx}{dt} = A(-\sin(\omega t + \delta))\omega$$
$$= -A\omega\sin(\omega t + \delta)$$

$$\frac{d^2x}{dt^2} = -A\omega\cos(\omega t + \delta)\omega$$
$$= -A\omega^2\cos(\omega t + \delta)$$
$$= -\omega^2(A\cos(\omega t + \delta))$$

• which can be re-written as $\frac{d^2x}{dt^2} = -\omega^2x$

Is the solution valid? $x(t) = A \cos(\omega t + \delta)$

• from first arguments $\frac{d^2x}{dt^2} + \omega^2 x = 0$

$$\bullet \quad -\omega^2 x + \omega^2 x = 0$$

- so $x(t) = A\cos(\omega t + \delta)$ is a solution
- and back to $\frac{d^2x}{dt^2} = -\omega^2x$

Frequency and energy models $\frac{d^2x}{dt^2} = -\omega^2x$

- What is meaning of $\frac{d^2x}{dt^2}$?
 - second derivative / curvature
- What happens if you change temperature?
 - angular frequency ω depends on energy surface
 - temperature does not appear here
 - what does change?

Changing temperature (oscillator)

• Change temperature

$$\frac{dx}{dt} = \dot{x} = v = -A\omega\sin(\omega t + \delta)$$

- E_{kin} changes
- $E_{kin} = \frac{1}{2}mv^2$
- $E_{kin} = \frac{1}{2}mA^2\omega^2\sin^2(\omega t + \delta)$
- amplitude changes

Frequencies and amplitudes

- For a given temperature
 - energy distributes amongst modes/ degrees of freedom
 - E_{kin} the same for different modes
 - $E_{kin} = \frac{1}{2} mv^2 = \frac{1}{2} mA^2 \omega^2 \sin^2(\omega t + \delta)$
- I have two modes in one protein
 - a slow motion / low frequency (bending of a hinge)
 - a fast / high frequency (movement of a sidechain)

$$E_{kin} = \frac{1}{2} mv^2 = \frac{1}{2} mA^2 \omega^2 \sin^2(\omega t + \delta)$$

- if ω is low A is high
- low frequency motions are large amplitude
- big motions are slow

Summary so far (harmonic oscillator)

- Maybe appropriate for motion without barriers
- only approximation
- frequencies do not depend on temperature
- we imagine a protein to have
 - many oscillators
 - some fast some slow
- bigger motions have lower frequency

Movement with barriers

- how often do you move right to left (and left to right)?
- our model
 - assume some random influences water and other atoms always hitting you
 - velocity from $E_{kin} = \frac{1}{2} mv^2$, $v \propto E_{kin}^{\frac{1}{2}}$
 - better... $E_{kin}^{1/2} \pm \text{random}$
 - if we reach the top
 - we may be moving slowly
 - may move to right (no change)
 - may fall into left energy well (change)
 - consequence

 $E_{barrier}$

Movement with barriers

- rate directly reflects
 - how often does a particle have enough energy to reach top of barrier?
- Boltzmann rule... (more formal next semester)

$$p_i \propto e^{\frac{-E_i}{kT}}$$

- implications
 - small barriers (small *E*)
 - easy / fast to cross
 - as temperature ↑ rate ↑

Return to early question

- do frequencies of motions change?
 - if we have motion in a well (harmonic oscillator) .. No
 - if we move between energy minima ... Yes

Which model is better?

- empirical
 - raise temperature and see if it changes
- physical model
 - what you believe in..

different kinds of motions (smaller)

- bond stretching, angle bending
 - nearly harmonic
- torsion angles
 - separate energy wells

- other motions may be locally like harmonic
 - vibrations of packed atoms

Bigger motions

- Calmodulin example
 - many Å and probably rather slow
 - too move from one conformation to the next many barriers

Summary

- models are too simple
 - most energy terms are not kx^2
 - locally not a bad approximation
 - we do not have simple energy barriers
 - many more than two states
 - spectrum of motions
- many motions are a mixture (concerted)

Detection of states

- Are all the different structures present at room temperature?
- I have two states A and B $\frac{p_a}{p_b} = \exp(\frac{E_A E_B}{kT})$
 - if $E_A E_B$ much bigger than kT (some kJ mol⁻¹)
 - only one state will be seen

Barrier size

- Barriers very small
 - all particles have plenty of energy
 - effectively not present

may be the case for some rotations

small

Types of motions

motion	amplitude Å	log ₁₀ of time (s)
bond vibration	0.01 – 0.1	-14 to -13
sidechain rotation surface sidechains	5 – 10	-11 to -10
protein hinge bending	1 – 5	-11 to -7
sidechain rotation inside protein	5	-4 to 0
helix / strand breakage	5 – 10	-5 to 1

Summary

- Motions are necessary to explain chemistry
- NMR and X-ray structures are time averages
- usually
 - small motions fast
 - big movements slow
- temperature dependence
 - different for different kinds of movement
 - can be used to estimate energy barriers