Cluster analysis

- classification and prediction
- methods
 - *k*-means
 - hierarchical
 - nearest neighbour
 - divisive
- Übung
- Many methods no perfect answers

Classification versus prediction?

Easy data two clusters

Classification versus prediction?

- Easy data two clusters
- can this be predictive?
 - put labels on

Classification versus prediction?

- Try a prediction based on income
- In general
 - if we know of some properties, we can guess others

Problems

- Easy data two clusters
 - is it really?

• alternative ?

Problems

• two clusters with sub-clusters?

Distance Measures (Euclidean)

- For any two points
 - want a distance / dissimilarity

Euclidean distance (easy in two dimensions)

$$d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$$

• in 3D
$$d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2)^{1/2}$$

• in
$$nD d_{ij} = ((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 + \dots)^{1/2}$$

Distance Measures (Manhattan)

• 2D
$$d_{ij} = |x_i - x_j| + |y_i - y_j|$$

• 2D
$$d_{ij} = |x_i - x_j| + |y_i - y_j|$$

• nD $d_{ij} = |x_i - x_j| + |y_i - y_j| + |z_i - z_j| + \cdots$

- Euclidean versus Manhattan versus ...
 - depends on belief
 - if one is lucky, results will not be too different
- Worse cases
 - category data
 - cars have

not x, y continuous descriptor

a possible Manhattan measure

A set of discrete descriptors

- identify properties
 - make long bit-vector
- dissimilarity?
 - count matching bits
- typically 10² 10³ properties
- crude?
 - enough properties that mistakes do not matter
- is this a Manhattan distance?
 - probably

$n_{polar} < 5$	0
$5 < n_{polar} < 10$	0
$n_{polar} \ge 10$	1
contains sulfur	0
acidic (can lose H ⁺)	0
has ether O	1

... lots more ...

mol. wt. < 300

 $300 < \text{mol. wt.} < 500 \ 1$

mol. wt. ≥ 500

)

General versus Specific

- When I know nothing
 - invent distance / dissimilarity based on descriptors *x*, *y*, ...
- If I know more, use an appropriate distance
 - sequence example
 - Jukes-Cantor distance, *p*-value measure
 - protein structures, metabolic pathways, small molecules
 - (geometric differences, similar reactions, bit strings)
- Given some distances what are the methods?

Clustering Methods

- *k*-means
- hierarchical
- fuzzy (not here)
- large data sets (not here)

k-means

• Pick *k* points - call them cluster centres

```
while (there is substantial change)
  assign each data-point to nearest centre
  re-calculate centres
```

k-means steps

pick 3 points

allocate all other points

pick new centres

k-means problems

- What is *k* ?
 - guess, experiment, preconception
- Initial choice of cluster centres
- requires concept of cluster centre (mean)
- non deterministic
- convergence
- cluster shape
 - what if red points become centres?

Hierarchical

- Two flavours
 - divisive
 - agglomerative / joining / nearest neighbour

agglomerative / joining / nearest neighbour

• For *n* observations form *n* clusters (each point is separate)

```
while (not finished)
  find two nearest clusters (details later)
  join
```

agglomerative / joining example

Divisive

split_into_two (cluster)

```
split_into_two (cluster)
  select two most separated points as centres of new clusters
  for each point in cluster
  allocate to nearest cluster centre
```

main procedure

```
all points in one cluster
while (not finished)
  find largest cluster
  split_into_two (cluster)
```

example

Divisive example

Breaking a joining method

- consider this data with an agglomerative method
- distances are important, not compactness
- is this always true?

breaking a divisive method

- method considers distances
- in this case
 - compactness of points is more important

- in many problems
 - we only trust measures of high similarity
 - example
 - molecular similarity
 - very different versus very very different

More ways to break joining methods

- Different forms of neighbour joining
 - earlier "single linkage"
 - sometimes "complete linkage" use biggest distance between clusters
- susceptible to outliers
- relevant to Übung

cluster distances

- many details glossed over
 - what is cluster distance? cluster centre?
- distance between clusters?
- distance between points is clear
 - between point and cluster
 - between clusters?
- sensible choices
 - from cluster to nearest point
 - from cluster to most typical point in other cluster

UPGMA

- in many bioinformatics texts
- unweighted pair group method using arithmetic averages
- take red points (5)
- take green points (2)
 - take average of all 2x5 distances
- debate over distance measures
 - similar to agglomerative versus divisive discussion
 - depends on structure of data

How complicated is clustering?

- in practice
 - distance based methods are best when a table of distances is available $O(n^2)$
- problem in most fundamental form
 - unknown *k*-clusters
 - combinatorial possibilities huge
- formalise our goal
 - maximise density within clusters
 - maximise distance between clusters
 - should be able to distinguish
 - 2 from 3 cluster answers

Are we finished?

- lots of decorations
 - iterations over cluster memberships
 - different definitions of distances, centres
- mixing x, y, z continuous descriptors and categories (red/blue/..)

Dendrograms

- assumption of hierarchy
- where you call the "classification" depends on where you want to cut tree
- protein shape example
 - most detailed level
 - very similar protein sequences

Applications - sequences

Sequence comparison

- distances?
 - evolutionary estimates or
 - similarity based on statistics (p-values)
 - clear model (evolution) suits hierarchy
 - related sequences
 - distances OK
 - less related sequences
 - alignments unreliable

Applications - protein structure

- 3 proteins of similar size
- 1bww and 1mqk easy (immunoglobulins human/mouse)
 - not easy to compare against 1dlw (globin shape)

	1bww	1mqk	1dlw
1bww	0	easy	?
1mqk		0	?
1dlw			0

Applications - protein structure

- Are we lost?
 - easiest to tackle problems with joining methods

Applications - microarray data

- what are microarrays?
 - little slabs with pieces of DNA bound

microarrays

- lots of bits of DNA from known genes (complementary)
- pour on a sample from cells with mRNA
 - some binds
 - detect by fluorescence
 - have a look which bits of DNA on chip were affected - tells us which genes were involved
 - we know which genes were activated in the original soup

microarrays

- feed sugar to cells
 - pour on to microarray who lights up?
 - boring
- feed lipids to cells
 - who lights up
- feed ... to cells
- starve cells, heat cells, find cells with disease
- are there groups of genes whose regulation is similar?
 - should let you find genes in pathways / regulation mechanisms

protein structure

- I simulate a protein molecule and see 10⁶ configurations
 - is the molecule constantly changing or sometimes leaving and returning to conformations?
 - does not look like much...
 backbone atoms only
 - long molecular dynamics simulation
 - 4 major clusters selected
 - each represented by centre
 - + two outliers

Distance measures - common theme

- similar protein structures
- similar sequences
- cells with similar behaviour
- closer relationships are more reliable

Summary

- Rarely is there a correct answer
- Method of choice may depend on data
- best case
 - reliable distances known between all points
- real problems
 - noise / outliers
- distance measures
 - close relationships are usually more reliable
- running time ?
 - $O(n^2)$ for dissimilarity matrix
 - method dependent usually less than $O(n^2)$