Protein Fold Recognition Weak Similarities

Why do we do sequence alignments ?

- find related proteins
 - build models
 - guess at function

For some interesting protein

• sequence always available

What should one do with really weak sequence homology?

Two ideas

- how to search for very weak similarities
- can one take advantage of conserved structures ?

Andrew Torda, Wintersemester 2012 / 2013, AST

Technical

- Searching for remote sequence homologues
- Sequence to structure alignments

Assumed knowledge

Some memory of sequence alignment methods, score matrix, O(n²) cost

Mission

For some protein sequence – find as much as possible

- function
- build good model
- build a bad model

Vague information may be useful

- which residues are near active site ?
- which residues are near a dimer interface ?
- which residues are in weakly structured loops ? (chemical modification)
- bad model may be enough for phasing (X-ray)

Approach

- start with most reliable methods
- add more speculative methods as necessary
- Example
 - simple sequence searches
 - searches for more remote homologues
 - searches for possible structures

- methods so far
 - emphasis on speed (in Georgio's lectures)

alignment methods

	slow	fast						
methods	Needleman & Wunsch / Smith-Waterman	/ seeded – blast, fasta, suffix tree methods						
time	O(<i>nm</i>) or O(<i>nm</i> ²) (sequence sizes)	O(<i>nk</i>) – database size						
guaranteed to find optimal alignment	yes	no						
very remote homologues	may work	less likely to work						

Does speed matter ?

Slow methods

Methods for large databases are

- fast
- approximate

Here

- ultimate use is often a small database (PDB 8.7 × 10⁴)
- computer time does not matter

In lab you have 1 or 10's of proteins

- each take weeks or months to work on
- if each search takes hours ? no problem

Remote searches...

Remote searches

When to do this?

- Assume simple (blast / fasta) search returned
 - related sequences
 - unknown function
 - none of related proteins have known structures

Weak sequence similarities

• Your sequence

yours **A B D E F G H I K L M N P Q**...

• finds no helpful proteins. Try searching with a related protein

prot_1 A B Q E F G R I S L T N P Q...

finds a protein whose structure has been solved
prot_2
Q B Q E Q G R Q S L T N P A...

Claim

- yours & prot_2 are related
- relationship too weak to see directly
- prot_2 can be used
 - to make a bad model, guess for function

Weak sequence similarities

- first idea
- take your protein
- collect related proteins
 - foreach (related protein)
 - do a sequence search
 - see if results change
- not practical
- not very systematic
- what else does one get from homologues ?

Information from related sequences

...

...

... ...

- usually one finds many related sequences.
- consider details...

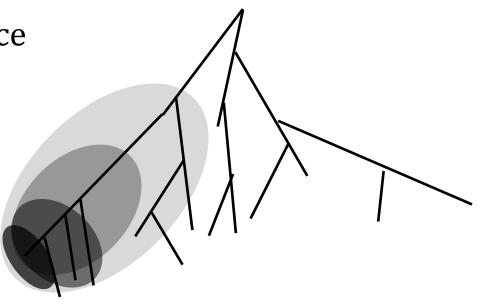
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAQVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAYWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAGWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAFWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAOVKAHG VLSADDKANIKAEWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAQVKGHG MLSPADKTNVKADWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAOVKGOG VLSPADKTNVKACWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAQVKAHG VLSPADKSNVKAWWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAQVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAQWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSQVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

Conservation

- as in secondary structure prediction lectures
- if your sequence has a Q here, $\sqrt{}$
 - may not be helpful to use it in sequence searches

L D D Q R Q S T R L D A Q R A D S T R V D D Q R R W S T R A D D Q R C A S S K I D D Q R D D S T R L D D Q R F G S T K

- better to use the "average" residue at this point
- first have to find the "average" residue
- leads to method


Searching with profiles

 initial average_sequence = your_sequence while (step < max_steps) search with blast using average_sequence if interesting result (function / structure..) return results

else

update average_sequence

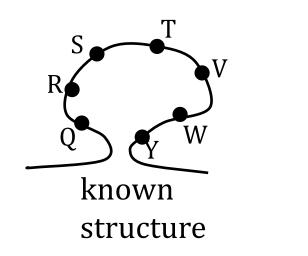
- basis of "psi-blast"
- does it work?

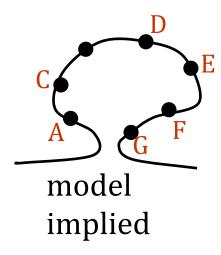
Remote sequence searching

- much more sensitive than simple searches, but
- involves weaker sequence similarities, more errors
- alignment not perfect
- statistical significance harder to estimate
- possibility of finding unrelated sequences (rubbish)
- still relies on some significant sequence similarity
- can one move away from sequence similarity?

Why move away from sequence

- if sequences provide information use this
- when does it fail ?
 - new functions, not yet

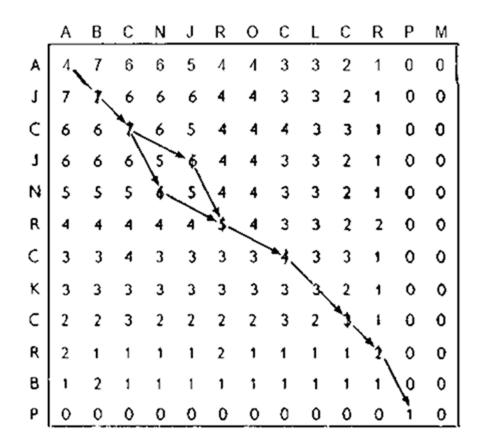

Sequence alignments – implied structures


From sequence viewpoint

- .. AC-DEFG..
- ..QRSTVWY..

What if structure of second sequence is known?

- .. AC-DEFG.. query sequence
- ..QRSTVWY.. known structure

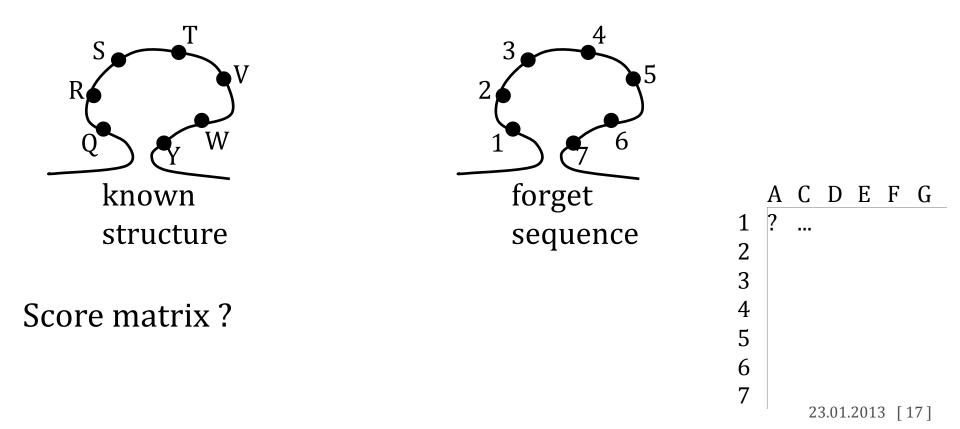


Sequence to structure alignments

Remember how sequence alignments work

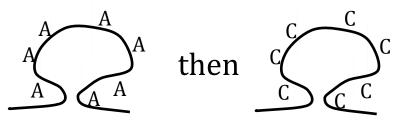
- similarity / substitution scores
- fill out score matrix
- find best path

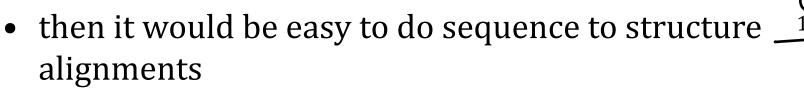
Can we use this for sequence to structure alignments ?



more exotic scoring

From sequence viewpoint


- .. AC-DEFG.. my sequence
- **.**.QRSTVWY.. a protein of known structure


rather than just align sequences, could I use the structure?

sequence to structure scoring

• I have to be able to place (A, C, D..) at each position and get a suitability score

- advantage:
 - we claim that structure is more conserved than sequence
 - can find appropriate/fitting/suitable structures for a sequence
 - very remote, but homologues
- vorsicht !!!!

C D E F

A ?

1

2

3

4

5

6

7

sequence to structure scoring

Define an energy function

- depends on interaction of residue with structure
 - easy
- depends on interaction with neighbours
 - but who are the neighbours ?

- we cannot even fill out a column in the score matrix
- to test every combination of neighbours
 - NP-complete
- An excuse to try some approximations

ACDEFG

?

?

?

?

?

?

2

1

2

3

4

5

6 7

approximations for scoring

Two problems

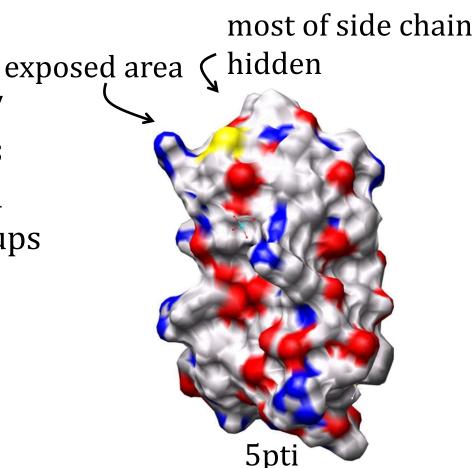
- we do not know where all the atoms are side chain coordinates
- to score "C" at each position we need to know neighbours

Side-chains : ignore / average

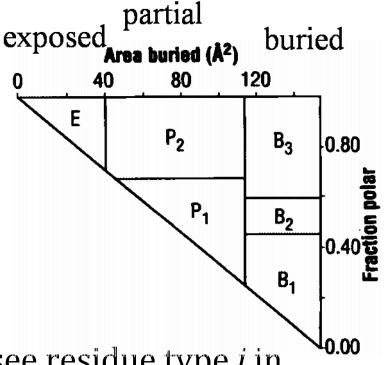
• forget for these lectures

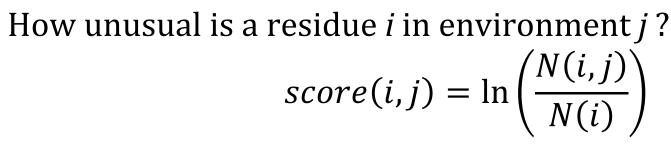
Neighbour positions : much harder

- environment description
- frozen approximation


- an example of profiles (case study)
- we know
 - certain sites are hidden from solvent (middle of protein)
 - only compatible with trp, phe, ile, ... (hydrophobic)
 - some sites are involved in "salt bridges"
 - some secondary structures are preferred by certain residues
- can one count the probabilities of residue types ?
- overview
 - collect list (parameterisation set) of proteins
 - classify sites (18 types)
 - collect probability of each residue type in each site type

For each site measure the Å² exposed to solvent


Sometimes one has charges / polar groups touching others

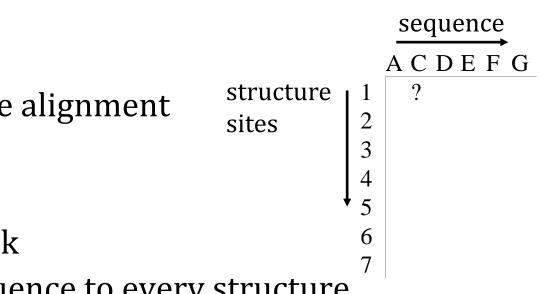

 measure fraction of buried area covered by polar groups

Define environments...

- 6 environment types
- 3 secondary structure types
 - α , β , others
- = 18 environments
- data collection
 - 16 proteins
 - find environment of each site
 - count
 - how many times does one see residue type *i* in environment *j* = N(*i*,*j*)
 - count how often does one see residue type i = N(i)

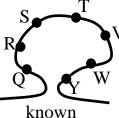
Final result ? a big scoring table

unlikely

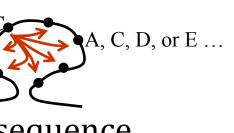

	Environment class	w	F	X	L	1	v	м	A	G	Ρ	С	т	S	Q	N	Е	D	н	κ	R
- what one expects	Β ₁ α Β ₁ β Β ₁	1.17	0.85	0.07	1.13	1.47	1.09	0.55	-0.79	-2.02	-1.16 -0.94 0.26	-0.22	-1.12	-2.91	-1.67	-1.42	-1.93	-2.56	-1.91	-2.69	-1.16
	B ₂ α B ₂ β B ₂	0.01	1.18	1.06	0.76	1.31	1.06	0.64	-1.55	-2.26	-2.21 -0.49 0.19	-0.87	-2.27	-1.77	-1.22	-2.07	-1.07	-1.41	-0.77	-1.14	-0.20
expects ²	Β3 α Β3 β Β3	0.75	0.81	1.30	0.18	0.54	0.56	-0.57	-0.93	-1.93	-0.68 -0.34 -0.13	-0.54	-0.44	-0.74	0.21	-0.24	-0.14	-0.86	0.82	-0.53	0.13
	Ρ1 α Ρ1 β Ρ1	0.36	-0.49	0.17	-1.03	0.20	0.46	-0.27	0.64	-0.82	-0.25 -0.55 0.66	1.49	0.93	0.33	-2.27	-1.32	-0.73	-1.07	-0.42	-1.21	-0.77
	Ρ2 α Ρ2 β Ρ2	-0.79	-0.54	-0.84	-1.30	-0.33	0.13	-0.72	-0.55	-0.98	-0.26 -1.29 0.44	-0.57	0.84	0.59	-0.08	-0.16	0.32	0.19	-0.87	0.59	0.10
	Ε α Ε β Ε	0.64	مەما	0.30	1.66	-1.47	-1.74	-0.68	0.06	1.46	0.04 -0.96 0.20	-0.24	0.14	0.65	-0.19	-0.06	-0.16	-0.78	-0.83	-0.52	-0.49

likely

Bowie, J.U., Lüthy, R, Eisenberg, D. (1991) Science 253, 164-170


Environment description - application

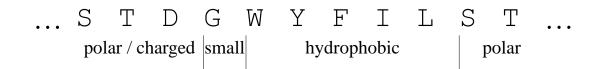
- given these descriptions use them
- take a protein structure label each site
- take sequence of interest
- for each residue
 - score at each site of protein
- score matrix
- find best path
 - sequence to structure alignment
- final application
 - take protein databank
 - try to align your sequence to every structure



Frozen approximation

- original problem
 - we want to use a score function which
 - sensitive to sequence
 - sensitive to structure
- remember original structure did have a sequence
- belief
 - if two proteins are related, the sequences will have similar properties
 - score with the residues of the original sequence

structure


Frozen approximation

- sequence • I can score my sequence in the ACDEFG environment of the known structure structure 9 1 good 2 sites 3 the environment is well characterised 4 • if my structure has polar residues 5 6 here, they will go into the scoring 7 function
- bad ?
 - we use the sequence of template (known structure)
 - it may only allow very related residues
 - original aim was to move away from close sequences

Summary so far

- look for closely related templates
- try sequence based methods
- sequence to structure methods are definitely possible
- can I make better scoring schemes ?

Scoring schemes

- how much structural information is hidden in sequence ?
- look at a sequence
- I already have labels for sites
 - implicit in substitution matrices
- does the structure contain extra information ? ...

Extra information from structures

Residues exist in a protein for different reasons

- gly is easy to substitute look at diagonal in blosum matrix
- in some turns, gly is essential
 - can only be seen from structure
- cys
 - sometimes a normal hydrophic residue
 - sometimes the geometry says it must form a disulfide bond
 - structure can say if there is another cys near in space

• it should be useful to combine sequence and structure information

Extra information from structures

- Claim hope
- combination of methods has better signal / noise

Implementation ? easy in principle

- for each residue *i* in your query sequence
 - for each site *j* in template
 - calculate sequence score *s*₁ based on profile of *i*
 - calculate structural score s₂ based on fitting residue type *i* into site *j*
 - score for alignment matrix = $s_1 + k s_2$
- for some constant *k*

In practice

- most fold recognition programs combine sequence terms and structural scores
- results may or may not be better than best pure sequence methods
- problems..

Problems with clever methods

Simple sequence searches

- good models for statistical significance
 - (is a related protein really related ?)

Remote sequence searches (psi-blast)

• statistics OK, but less reliable

Structure / Sequence+structure methods?

- no good model for scores
- no good model for statistical significance
- how will score grow with
 - size of query ?
 - size of alignment ?
 - sequence composition ?

Principle

If you have extra information (structure)

• must be a good idea to use it

	sequence	structure based
database size	107	104
	fast	slow
scores	good models	weaker
statistical significance	good or almost good	weaker

Summarise and stop

- Use sequence information when possible
- use adventurous sequence methods when necessary
- use very speculative methods (sequence to structure) when necessary

Next week

- mysterious question
 - how many different protein structures are there ?