Wintersemester 2012/2013, AST

Cluster Analysis Ubung

Assignment due date: 19.11.2012
Exercises on 5.11.2012 and 12.11.2012

1 Goals

For this Ubung, you should:

e familiarise yourself with some of the common functions of the statistics package “R”
e cmploy and understand some of the clustering methods

e and submit a very brief report (questions in section 4)

2 Using the “R” system:

“R is a system for statistical computation and graphics. It consists of a language plus a run-
time environment with graphics, a debugger, access to certain system functions, and the ability
to run programs stored in script files.” — R project page, http://www.r-project.org/

First of all we create a directory to work in. The name of the directory is just a suggestion,
feel free to choose any name you like. Type in the following commands from a shell prompt:

mkdir ast-cluster
cd ast-cluster

We start R by running the following command from a shell prompt:
/usr/local/zbh/bin/R

You should now see the R command prompt. Remember that you can save yourself a lot of
typing by using the up and down arrows of the keyboard to cycle through previously entered
commands and the tab key to automatically complete commands (just like you can at the
shell prompt).

To store a value in a variable, we use the assignment operator “<-":
> answer <- 42

You may also type “=” instead of “<-".

We can inspect the value of the variable answer by simply typing its name at the command
prompt:

> answer
[1] 42

The first part of the output (“[1]”) indicates that this is the first row. This is of course
irrelevant for simple numbers or vectors but will become useful later on when we deal with
matrices. Use the function 1s() to get a list of all variables in the current session. When you
type in the name of a function without the parentheses and arguments, the function definition
will be printed. Try this out by entering 1s, but don’t worry if you don’t understand the code.

To create a vector, we will use the “c” function (an abbreviation of combine):

> foo <- c(1, 2, 3)
> foo
(1] 123

The contents of vectors can be accessed by using the vector name with the index in square
brackets. IMPORTANT: in contrast to many programming languages, the index of the first
element of a vector is “17. Accessing index “0” of any variable gives you its type.

> fool[0]
numeric(0)
> fool[1]
[1] 1

Matrices are constructed in a similar manner. The matrix constructor accepts a data vec-
tor and optional specifications, such as the number of rows or columns. The matrix is filled
columnwise, unless the parameter byrow is set to TRUE. Please beware that if there are not
enough entries in the data vector to fill the matrix, the entries of the data vector will be reused
instead of raising an error message.

> bar <- matrix(c(1,2,3,4,5,6), nrow=3)
> bar

[,11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

As with vectors, you can access matrix elements using square brackets, but unlike C arrays, all
indices are placed as a comma separated list in the first (and only) pair of square brackets. If
an index is negative, the row or column corresponding to that (positive) index will be omitted.

> bar[3,2]
[1] 6

> bar[-3,2]
[1] 4 5

Simply leaving out a parameter selects the entire column or row:

> bar[,2]
[1] 4 5 6

To concatenate matrices, you can use the rbind and cbind commands, which will try to
append matrices and vectors row- and columnwise, respectively.

> rbind(bar, c(3.5,6.5))

(11 [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

[4,] 3.5 6.5
> cbind(bar, <(7,8,9))

[,11 [,2]1 [,3]
[1,] 1 4 7
[2,] 2 5 8
(3,1 3 6 9
As with the matrix constructor, if a vector does not contain enough elements, the first elements

will be replicated at the missing positions. This does not hold true for matrices, though.
Concatenating incompatible matrices will produce an error message.

2.1 Storing your R commands in a script file

Often it is more convenient to be able to store the R commands you want executed in a script
file and run them from there. You can create the script file for R with your favourite text
editor (if you don’t have a favourite text editor you can use the program kate). The following
command (to be executed from the shell prompt, not the R prompt) would run the R commands
stored in the file aufgabel.r:

/usr/local/zbh/bin/Rscript aufgabel.r

This command will not work yet unless you have created a file called aufgabel.r. As a
reminder, if you want to store the output of R that was printed to the screen in the file
out-aufgabel.txt you would use:

/usr/local/zbh/bin/Rscript aufgabel.r > out-aufgabel.txt

Please note that simply typing in the name of a variable at the interactive prompt will print
its value, but to do the same in a script you will have to actually call the print function on
the variable. For example, to print the variable x you would call print (x).

It is also possible to read in R commands stored in a file from the interactive prompt with
the function source, i.e. running source(’foo.r’) will read and execute everything stored
in the file foo.r as if it had been typed into the command prompt.

HINT: During this exercise, you will have to type in longer function definitions. It is advisable
to store these function definitions in a text file so you can edit them more easily. For the
homework assignment, you will have to submit your code so that it is runnable with Rscript.

2.2 Getting help

Every function in R is thoroughly documented. You can access the documentation to a
command with:

> help(plot)

This can be abbreviated to:

> 7plot

You can search inside the documentation with:

> 77plot

3 Exercises
Open the data file and assign the data to a variable (storing it as a matrix):

> cluster.datapath <- file.path(’/home/matthies/uebung-clustering/sampledata’)
> cluster.data <- as.matrix(read.table(cluster.datapath, sep=’,’))

Check the dimensionality of your data:

> dim(cluster.data)
[1] 100 2

This tells you that your data is a matrix with 100 rows and 2 columns. You can also plot your
data with the plot command (see figure 1 for the result):

> plot(cluster.data)
To store the plot to the file myplot.png use the following commands:

> png(’myplot.png’)
> plot(cluster.data)
> dev.off ()

The final dev.off () command finalises the plot and writes out the file. The next plot will
again be shown on your graphical display.

You will be using two different clustering methods, k-means and hierarchical clustering. This
can be done in R with the help of the kmeans and hclust functions. If you are unsure about
the correct usage of these functions or simply curious, you can read their help documentation:

> help(kmeans)
> help(hclust)

3.1 K-means clustering

Do several runs with k-means clustering, and use a different number of clusters as parameter
for each run (replace <number of clusters> with the number of clusters in the following
command):

35

3.0
L

\Z
25
L

1.4 16 18 2.0 2.2 24 2.6

\%A

Figure 1: Plot of the test data set

> cluster.kmeans <- kmeans(cluster.data, <number of clusters>)

You can visualise them with the following commands (don’t close the plot window before
running the second command):

> plot(cluster.data, col = cluster.kmeans$cluster)
> points(cluster.kmeans$centers, col = 1:6, pch=7, 1lwd=3)

The contents of the data structure can be inspected by entering cluster.kmeans. As you
can see, the cluster subset is a vector of integers, each denoting the cluster membership. This
cluster membership is used in the plot command to select the colour (the $ symbol selects this
substructure by name).

Repeat the clustering twice with the same number of clusters, but save both results into differ-
ent variables cluster.kmeans.1 and cluster.kmeans.2. To compare these two, create a ta-
ble which denotes how often each element is matched in both vectors (also read help(table)):

> tab <- table(cluster.kmeans.1$cluster, cluster.kmeans.2$cluster)
> tab

The diagonal entries denote how often a data point was assigned to the same cluster in both
runs, while the off-diagonal entries denote how often the cluster index didn’t match. This table

is therefore called a confusion matrix. Unfortunately, since the cluster centres are randomly
initialised, the cluster numbering may be different even if the clustering is identical. If we
want to calculate the rate of mismatches for a given k-means pairing, we will have to first
find a correct matching of clusters and then count the number of mismatches. Note that the
function may be split over two pages in this handout.

cluster.mismatchrate <- function(x)

{
miss <- 0 # initialise
for(i in l:nrow(x)) # look at all rows

{

maxindex <- which.max(as.vector(x[i,])) # find matching clusters

miss <- miss+sum(x[i,-maxindex]) # sum over row excluding match
miss <- miss/sum(x) # normalise
miss # return result

}

The “#” symbol marks a comment that extends to the end of the line. This short function is
adequate for well-behaved data sets and is the one we will use in the following. Play around
with the different commands used in the function until you feel comfortable using them.

We use the function by passing it the previously stored table tab like so:
> cluster.mismatchrate(tab)

3.2 Hierarchical clustering

The hierarchical clustering algorithm in R needs a precomputed distance matrix, which con-
tains the pairwise distances between data points. Fortunately, a function to generate a distance
matrix is already implemented in R.

> cluster.dist <- dist(cluster.data, method=’euclidean’)

The resulting data structure is a lower triangular matrix, where the entry at (i,j) contains the
distance between data points i and j. We can now run the hierarchical clustering algorithm:

> cluster.hclust <- hclust(cluster.dist)

The output is a list of the order in which adjacent clusters are joined, with each data point
being its own cluster at initialisation. This output can be plotted as a dendrogram by running

7

plot(cluster.hclust). To compare this to the k-means clustering, the output has to be
reduced to a number of clusters. This can be achieved by using the cutree method, which
produces the n last clusters to be joined.

> cluster.hcut <- cutree(cluster.hclust,<number of clusters>)

The cluster.hcut vector contains the same type of information as the previously used
cluster.kmeans$cluster, and can be compared with the same methods.

4 Assignment

Please submit a brief report for the following questions via email: ast_uebungat|zbh[dot]uni-
hamburg[dot]de (please include your full name). Attach one file containing the written answers
to all the questions in the assignment (only .txt or .pdf formats please), and one file per
question with source code. Your source code should be runnable with Rscript.

1. Write a batch function to run and compare 500 pairs of k-means clusterings and calculate
the average mismatch rate. Where and why do they differ (if they do)? Is this consistent
with your expectations? Elaborate.

2. Compare 500 pairs of k-means and hierarchical clusterings. Is there a systematic differ-
ence between the clustering results? Explain your observations.

3. What is the linkage method used in the hierarchical clustering and how does it work?
Does the clustering change if you use a different linkage method? Start by reading the
R help information on the hclust method.

4. You may add up to 5 data points to the data set (do not use outlandishly large values,
stay within the general area of the existing data set). Can you add them in a way that
breaks the hclust method, i.e. can you add the points in a way that will completely
change the clustering” Where did you add them and why? Do they affect the k-means
clustering?

