Markov Chains and Mutations

- bioinformaticians did not invent Markov Chains / Markov models ...
- what is the philosophy of a substitution matrix?
- Markov Chain in bioinformatics different to elsewhere? No.
- Emphasis on substitution models
- what have you learnt about sequence comparison?

Coming

- relevance to bioinformatics
- states
- transition matrices

Relevance to sequences

- Aim: make the best possible alignments
- What do substitution matrices do? proteins
- . . D A F A R A D C D M A . .
- . . A D C F A G D Q R M A .
- how similar
 - are C and A?
 - the **F** / **F** match?
- this can be quantified
- how important are alignments?

Importance of correct alignments

As sequences:

In structural terms:

moving one residue is 3.8 Å

Basis of phylogeny

probability of a tree

What do we know from nucleotides?

Typical nucleotide matrix

- boring
- no knowledge of specific mutations

	A	C	G	T
A	1	0	0	0
C	0	1	0	0
G	0	0	1	0
T	0	0	0	1

Why is the idea obviously bad for proteins?

- example
- D (asp, small, acidic)
 - does it mutate to W (trp, large hydrophobic)?
 - does it mutate to E (glu, small, acidic)? yes
- imagine ...

What does a full matrix look like?

	•			
	D	Е	W	•••
D	10	5	-5	
E	5	10	-5	
W	-5	-5	15	
• • •				

A serious protein similarity matrix

blosum62:

```
ARNDCQEGHILKMFPSTWY
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2
H-2 0 1-1-3 0 0-2 8-3 -3 -1-2-1-2-1-2-2 2-3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2
к -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1
 0 -1 0 -1 -1 -1 -2 -2 -1 -1 -1 -2 -1
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -1
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
  0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1
```

some features

- diagonal
- similar
- different

Model for mutation

A series of evolutionary steps

different protein sample

A table that tells us about direct mutations

•
$$\mathbf{A} \rightarrow \mathbf{E}$$

but also indirect

$$\bullet$$
 not $\mathbf{A} \rightarrow \mathbf{S} \rightarrow \mathbf{T} \rightarrow \mathbf{A} \rightarrow \mathbf{D} \rightarrow \mathbf{E}$

other terminology.. Markov chains / matrices

Markov chains / matrices / nomenclature

Nomenclature

- time *t*
- a set of possible states E_1 , E_2 , E_3 , ...

Markov chain

- series of steps from E(t), $E(t+\delta t)$, $E(t+2\delta t)$, ... rule
- state at $t+\delta t$ depends on now, t, not $t-\delta t$
- no memory / inertia / history
- in state E_j now,
- probability of being in state E_k at $t+\delta t$ is p_{jk}

States

- a base / residue has 4 / 20 states
- via evolution jumps between

a proton spin has two states $\uparrow\downarrow$

a macromolecule has a^n conformations and jumps between

Markov Chains

From each state, system can move to another state with a certain probability p_{ik}

My system may not disappear

at each step, my total population must remain the same

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \cdots & \cdots & \cdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{bmatrix}$$

A markov transition matrix?

- a simple / initial substitution matrix is a true transition probability matrix
- this places restrictions on relevant data
 - $\bullet \quad D \quad \rightarrow \quad E$
 - $\bullet \ not \ \ \textbf{D} \ \rightarrow \ \textbf{S} \ \rightarrow \ \textbf{T} \ \rightarrow \ \textbf{A} \ \rightarrow \ \textbf{D} \ \rightarrow \ \textbf{E}$
- rows should sum to $1 = \sum_{i} p_{ij}$

Data for substitution matrices

- compare human and bacterial sequences
 - 100 millions years evolution / many substitutions
- we want statistics for direct substitutions
- tables usually based on very related sequences
 - count mutations
 - man-monkey-mouse...
 - very few mutations
 - problem
 - lots of data needed in order to observe mutations
 - how many times does one see a W→E substitution

Applying a matrix

- three types of amino acid E, D, W
- population E, D, W = 0.4, 0.4, 0.2

• at time $t + \delta t$

$$\mathbf{P} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

$$\begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.6 \times 0.4 + 0.3 \times 0.4 + 0.1 \times 0.2 \\ 0.3 \times 0.4 + 0.6 \times 0.4 + 0.1 \times 0.2 \\ 0.1 \times 0.4 + 0.1 \times 0.4 + 0.8 \times 0.2 \end{bmatrix}$$

Properties and definitions

• What happens if we have two steps? $\begin{vmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{vmatrix}$

$$\begin{bmatrix} 3/&1/\\ /4&/4\\ 1/&1/\\ 2&/2 \end{bmatrix}$$

$$\begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 9/4 + 1/8 & 3/4 + 1/8 \\ 3/8 + 1/4 & 1/8 + 1/4 \\ 3/8 + 1/4 & 3/4 + 1/8 \end{bmatrix}$$
$$= \begin{bmatrix} 11/6 & 5/6 \\ 5/8 & 3/8 \end{bmatrix}$$

• the rows still sum to $1 = \sum_i p_{ij}$

Why would you multiply matrices

- first transition matrix
 - probabilities over some short δ t
 - comparing mouse and men
- next transition matrix
 - probabilities over $2\delta t$
 - comparing men and chickens
- ...
- what happens with many matrix multiplications?

Stationary Distribution

Apply matrix multiplication infinitely

what would happen? (biological case - aperiodic)

Informal arguments

- whatever you are (A, C, G, T or A, C, D, E, G, H... W, Y)
- add up all the probabilities which lead to "A"
- eventually the system will stop changing
- can be argued (and solved) formally

Stationary Distribution

Argument similar to detailed balance

- I pick any two states, flow_{ij} = flow_{ji} $p_i \pi_{ij} = p_j \pi_{ji}$
- there is a set of probabilities for leaving state i, p_{ix}
- a set of probabilities for entering state i, p_{xi}
- a population in state i, π_i
- the decrease in population depends on $p_{ix}\pi_i$
- if π_i were big, $p_{ix}\pi_i$ is big
 - π_i decreases until $p_{ix} \pi_{i} = p_{xi} \pi_{(not i)}$

Nomenclature.. \mathbf{P}^n where $n \to \infty$

biological sense?

Stationary Distribution

Biological sense

- we survey all proteins and find gly = 5%, trp=2%, ...
- this is the stationary distribution
- I start with one protein (not near stationary distribution)
- it evolves forever becomes a pure random sequence

Model assumes evolution is a random process

leads to non-biological sequences

Resolution

- evolution has not gone forever
- model is broken
- model is applicable for shorter times

Chemistry / physic and bioinformatics

Chemistry – *n* state system at equilibrium

- nothing is changing
- matrix has been applied infinitely

Bioinformatics

nothing changes? you are dead

Both are based on the same idea of a matrix of transition probabilities

Broken Matrices

What if rows do not sum to one?

$$\mathbf{P} = \begin{bmatrix} 3/& 1/\\ 4&/8\\ 1/& 1/\\ 2&/2 \end{bmatrix}$$

$$\begin{bmatrix} 3/4 & 1/8 \\ 1/4 & 1/8 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3/4 & 1/8 \\ 1/4 & 1/8 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 9/6 + 1/6 & 3/32 + 1/16 \\ 3/8 + 1/4 & 1/16 + 1/4 \end{bmatrix}$$
$$= \begin{bmatrix} 5/8 & 5/32 \\ 5/8 & 5/16 \end{bmatrix}$$

The p_{ij} values will get smaller and smaller

- the sequence will disappear
- could have made a version which increases

Unlikely matrices

• rows all sum to 1

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.3 & 0.7 \\ 0.5 & 0.5 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \end{bmatrix}$$

- if I am in state 1 or 2
 - will move to 3 or 4 (and vice versa)
- this is a periodic Markov matrix
- does not happen in sequences (or most statistical mechanics)
- we believe
 - transition matrices for sequences are "aperiodic"

Absorbing states

- I start in state *i*
- eventually reach state 2
 - cannot escape
- state 2 is an absorbing state
- what is stationary distribution?

$$\mathbf{P} = \begin{bmatrix} 0.2 & 0.3 & 0.25 & 0.25 \\ 0 & 1 & 0 & 0 \\ 0.3 & 0.1 & 0.1 & 0.5 \\ 0.2 & 0.3 & 0.2 & 0.3 \end{bmatrix}$$

Summary of properties

- rows sum to $1 = \sum_{j} p_{ij}$
- processes are not periodic
- there are no absorbing states
- infinite number of mutations either
 - does not occur or
 - you die
- DNA world: small 4×4 matrix
- proteins 20×20

Applications

- basis of calculating evolutionary distances
- philosophy of substitution matrices
- chemistry

Stationary distribution in chemistry

- who really invented Markov chains?
- stationary distribution? easy

$$\pi_{i} = \frac{e^{\frac{-E_{i}}{kT}}}{\sum_{j=0}^{N_{states}} e^{\frac{-E_{j}}{kT}}} = \frac{e^{\frac{-E_{i}}{kT}}}{Z}$$

- transition matrix
 - not uniquely determined
 - more than one transition matrix can lead to the same equilibrium
 - sometimes estimated (simulations)

Applications / Summary

- chemistry / physics
- evolutionary models phylogeny
 - rephrase question what is the most probable tree?
- substitution matrices

- C→D probability in one generation? 100 generations?
- Restrictions
 - periodicity / absorbing states
- Differences to sequence analysis people

Summary

Chemistry / physics

- stationary states give you equilibrium
- starting from non-equilibrium applying matrix gives you path to equilibrium
 - often relaxation path

Sequences

- stationary states are not wanted
- model neglects all selective pressure
- gaps not accounted for (also in sequence statistics)