Protein Fold Recognition / Weak Similarities

Why do we do sequence alignments?
- find related proteins
 - build models
 - guess at function

For some interesting protein
- sequence always available

What should one do with really weak sequence homology?

Two ideas
- how to search for very weak similarities
- can one take advantage of conserved structures?
Technical

- Searching for remote sequence homologues
- Sequence to structure alignments

Assumed knowledge

- Some memory of sequence alignment methods, score matrix, $O(n^2)$ cost
Mission

For some protein sequence – find as much as possible
• function
• build good model
• build a bad model

Vague information may be useful
• which residues are near active site?
• which residues are near a dimer interface?
• which residues are in weakly structured loops? (chemical modification)
• bad model may be enough for phasing (X-ray)
Approach

• start with most reliable methods
• add more speculative methods as necessary

Example

• simple sequence searches
• searches for more remote homologues
• searches for possible structures

Methods in other courses

• emphasis on speed (in Georgio's lectures)
alignment methods

<table>
<thead>
<tr>
<th>slow</th>
<th>fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>methods</td>
<td>seeded – blast, fasta, suffix tree methods</td>
</tr>
<tr>
<td>Needleman & Wunsch</td>
<td>Smith-Waterman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>guaranteed to find optimal alignment</th>
<th>very remote homologues</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(nm) or O(nm(^2)) (sequence sizes)</td>
<td>yes</td>
<td>may work</td>
</tr>
<tr>
<td>O(nk) – database size</td>
<td>no</td>
<td>less likely to work</td>
</tr>
</tbody>
</table>

Does speed matter?
Slow methods

Methods for large databases are
- fast
- approximate

Here
- ultimate use is often a small database (PDB 9.7×10^4)
- computer time does not matter

In lab you have 1 or 10's of proteins
- each take weeks or months to work on
- if each search takes hours? no problem

Remote searches...
Remote searches

When to do this?

Assume simple (blast / fasta) search returned
- related sequences
- unknown function
- none of related proteins have known structures
Weak sequence similarities

Your sequence

A B D E F G H I K L M N P Q...

finds no helpful proteins. Try searching with a related protein

prot_1

A B Q E F G R I S L T N P Q...

• finds a protein whose structure has been solved

prot_2

Q B Q E Q G R Q S L T N P A...

Claim

• yours & prot_2 are related
• relationship too weak to see directly
• prot_2 can be used
 • to make a bad model, guess for function
Weak sequence similarities

• first idea
• take your protein
• collect related proteins
 • foreach (related protein)
 • do a sequence search
 • see if results change

• not practical
• not very systematic

• what else does one get from homologues?
Information from related sequences

• usually one finds many related sequences.

• consider details...

```plaintext
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
MLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
LSLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPDDKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
MLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
MLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
VLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
MLSPADKTNVKAAGWKGVAHAGAYGAEALERMFLSFPTTKYFPPFDLSHGSAQVKGHG
```

06.01.2014 [10]
Conservation

If your sequence has a Q here,
• may not be helpful to use it in sequence searches

 L D D Q R Q S T R
 L D A Q R A D S T R
 V D D Q R R W S T R
 A D D Q R C A S S K
 I D D Q R D D S T R
 L D D Q R E G S T K
 L D D Q R F C S T R

• better to use the "average" residue at this point

• first have to find the "average" residue
• leads to method
Searching with profiles

- initial average_sequence = your_sequence

while (step < max_steps)
 search with blast using average_sequence
 if interesting result (function / structure..)
 return results
 else
 update average_sequence

- basis of "psi-blast"

- does it work?
Remote sequence searching

- much more sensitive than simple searches, but
- involves weaker sequence similarities, more errors
- alignment not perfect
- statistical significance harder to estimate
- possibility of finding unrelated sequences (rubbish)
- still relies on some significant sequence similarity
- can one move away from sequence similarity?
Why move away from sequence?

- if sequences provide information – use this

- if you are desperate...
Sequence alignments – implied structures

From sequence viewpoint

..AC–DEFG..
..QRSTVWY..

What if structure of second sequence is known?

..AC–DEFG.. query sequence

..QRSTVWY.. known structure

known structure

model implied
Sequence to structure alignments

Remember how sequence alignments work
- similarity / substitution scores
- fill out score matrix
- find best path

Can we use this for sequence to structure alignments?

more exotic scoring

From sequence viewpoint

..AC–DEFG.. my sequence

..QRSTVWY.. a protein of known structure

rather than just align sequences, could I use the structure?

known structure

forget sequence

Score matrix?
sequence to structure scoring

I have to be able to place (A, C, D..) at each position and get a suitability score

then

• then it would be easy to do sequence to structure alignments

Advantage:
• we claim that structure is more conserved than sequence
• can find appropriate/fitting/suitable structures for a sequence
• very remote, but homologues

vorsicht !!!!
sequence to structure scoring

Define an energy function
- depends on interaction of residue with structure
 - easy
- depends on interaction with neighbours
 - but who are the neighbours?

Bad news
- we cannot even fill out a column in the score matrix
- to test every combination of neighbours
 - NP-complete
An excuse to try some approximations
approximations for scoring

Two problems
- we do not know where all the atoms are – side chain coordinates
- to score "C" at each position we need to know neighbours

Side-chains: ignore / average
- forget for these lectures

Neighbour positions - much harder
- environment description
- frozen approximation
Environment description

An example of profiles (case study)

We know

- certain sites are hidden from solvent (middle of protein)
 - only compatible with trp, phe, ile, ... (hydrophobic)
- some sites are involved in "salt bridges"
- some secondary structures are preferred by certain residues
- can one count the probabilities of residue types?

Overview

- collect list (parameterisation set) of proteins
- classify sites (18 types)
- collect probability of each residue type in each site type

Environment description

For each site measure the Å² exposed to solvent

Sometimes one has charges / polar groups touching others
• measure fraction of buried area covered by polar groups

Define environments...
Environment description

- 6 environment types
- 3 secondary structure types
 - \(\alpha, \beta,\) others
- \(= 18\) environments

Data collection

- 16 proteins
- find environment of each site
- count
 - how many times does one see residue type \(i\) in environment \(j = N(i,j)\)
 - count – how often does one see residue type \(i = N(i)\)

Environment description

How unusual is a residue \(i \) in environment \(j \)?

\[
\text{score}(i, j) = \ln \left(\frac{N(i, j)}{N(i)} \right)
\]

Final result? a big scoring table

Environment class	W	F	Y	L	I	V	M	A	G	P	C	T	S	Q	N	E	D	H	K	R	
\(B_1 \alpha \)	1.00	1.32	0.18	1.27	1.17	0.66	1.26	-0.66	-2.53	-1.16	-0.73	-1.29	-2.73	-1.06	-1.93	-1.74	-1.97	-0.34	-1.82	-1.67	
\(B_1 \beta \)	1.17	0.85	0.07	1.13	1.47	1.09	0.55	-0.79	-2.02	-0.24	-0.94	-2.22	-1.12	-2.91	-2.16	-2.42	-1.93	-2.56	-1.91	-2.69	-1.16
\(B_1 \)	1.05	1.45	0.17	1.10	1.11	1.12	0.96	-0.91	-1.92	0.26	-1.22	-1.50	-2.81	-1.17	-2.42	-2.52	-1.76	-1.12	-2.59	-2.16	
\(B_2 \alpha \)	0.50	0.90	0.65	1.01	0.63	0.68	1.12	-0.69	-1.49	-2.21	-0.10	-1.50	-1.47	-0.23	-0.61	-0.71	-1.62	0.23	-0.70	0.98	
\(B_2 \beta \)	0.01	1.18	1.05	0.78	1.31	1.06	0.64	-1.55	-2.28	-0.49	0.87	2.27	-1.77	-1.22	-2.07	-1.07	-1.41	-0.77	-1.14	-0.20	
\(B_2 \)	1.02	1.05	1.12	0.84	0.91	0.69	0.90	-0.96	-1.68	0.19	-0.05	-0.76	-1.17	-0.76	-0.60	-1.25	-1.28	0.46	-2.34	-0.80	
\(B_3 \alpha \)	0.92	-0.03	0.58	0.15	0.04	-0.02	0.69	-0.57	-1.86	-0.88	0.57	-0.96	0.22	-0.06	0.06	-0.50	0.73	0.43	0.98		
\(B_3 \beta \)	0.75	0.81	1.38	0.15	0.54	0.56	-0.57	-0.93	-1.93	-0.34	-0.54	-0.44	-0.74	0.21	-0.24	-0.14	-0.88	0.82	-0.53	0.13	
\(B_3 \)	1.07	0.70	1.13	0.35	-0.17	-0.03	0.23	-0.96	-0.98	-0.13	-1.20	-0.50	-0.54	0.05	0.04	-0.36	-1.05	1.01	0.10	0.66	
\(P_1 \alpha \)	-1.35	-1.02	-0.59	-0.82	-0.24	0.10	-0.03	0.73	-0.49	-0.25	0.95	0.31	0.34	0.14	0.54	-0.17	-0.25	-0.52	-0.21	-0.28	
\(P_1 \beta \)	0.38	-0.49	0.17	-1.03	0.20	0.46	-0.27	0.64	-0.82	-0.55	1.49	0.93	0.33	0.27	2.77	-1.72	0.73	0.42	-1.21	0.77	
\(P_1 \)	-1.28	-1.20	-1.31	-0.62	-0.23	0.01	-1.19	0.46	-0.24	0.66	1.35	0.50	0.49	0.63	0.13	0.61	-0.86	0.12	-0.74	-1.29	
\(P_2 \alpha \)	-1.14	-1.40	-0.79	-0.35	-0.54	-0.48	0.45	0.06	-0.50	0.28	-0.93	0.05	0.18	0.55	0.05	0.56	0.28	0.08	0.61	0.50	
\(P_2 \beta \)	-0.79	-0.54	-0.84	-1.30	-0.39	0.13	-0.72	0.55	0.98	-1.29	-0.57	0.84	0.59	0.08	-0.16	0.32	0.19	0.07	0.59	0.10	
\(P_2 \)	-0.82	-0.65	-0.51	-0.70	-1.09	0.88	0.89	-0.15	-0.40	0.44	-0.60	0.06	0.28	0.27	0.50	0.49	0.19	0.44	0.30		
\(E \alpha \)	-1.35	-2.20	-2.10	-1.58	-2.76	-1.10	-0.72	0.48	0.68	0.04	-0.44	-0.17	0.15	0.36	0.28	0.59	0.44	-0.19	0.12	0.34	
\(E \beta \)	0.84	-0.00	0.30	-1.60	-1.47	1.74	0.65	0.06	1.46	-0.96	-0.24	0.14	0.85	-0.19	0.06	0.16	-0.76	0.83	0.52	0.49	
\(E \)	-2.14	-1.90	-0.94	-1.19	-1.61	-0.91	-1.67	0.12	-1.13	0.20	-0.46	0.12	0.25	0.05	0.41	0.03	0.22	-0.25	-0.34	-0.32	

Environment description - application

• given these descriptions – use them
• take a protein structure label each site
• take sequence of interest
• for each residue
 • score at each site of protein
• score matrix
• find best path
 • sequence to structure alignment

Final application
• take protein databank
• try to align your sequence to every structure
Frozen approximation

Original problem

- we want to use a score function which
 - sensitive to sequence
 - sensitive to structure

Remember – original structure did have a sequence

- belief
 - if two proteins are related, the sequences will have similar properties
 - score with the residues of the original sequence
Frozen approximation

I can score my sequence in the environment of the known structure

- good
 - the environment is well characterised
 - if my structure has polar residues here, they will go into the scoring function

- bad?
 - we use the sequence of template (known structure)
 - it may only allow very related residues
 - original aim was to move away from close sequences
Summary so far

- look for closely related templates
- try sequence based methods
- sequence to structure methods are definitely possible

- can I make better scoring schemes?
Scoring schemes

• how much structural information is hidden in sequence?
• look at a sequence
• I already have labels for sites
 • implicit in substitution matrices
• does the structure contain extra information? ...
Extra information from structures

Residues exist in a protein for different reasons

• gly is easy to substitute – look at diagonal in blosum matrix
 • in some turns, gly is essential
 • can only be seen from structure

• cys
 • sometimes a normal hydrophic residue
 • sometimes the geometry says it must form a disulfide bond
 • structure can say if there is another cys near in space

• ...

• it should be useful to combine sequence and structure information
Extra information from structures

Claim – hope
• combination of methods has better signal / noise

Implementation ? easy in principle

for each residue i in your query sequence
 for each site j in template
 calculate sequence score s_1 based on profile of i
 calculate structural score s_2 based on fitting residue type i into site j
 score for alignment matrix = $s_1 + k s_2$

for some constant k
In practice

- most fold recognition programs combine sequence terms and structural scores
- results may or may not be better than best pure sequence methods
- problems..
Problems with clever methods

Simple sequence searches
• good models for statistical significance
 • (is a related protein really related ?)

Remote sequence searches (psi-blast)
• statistics OK, but less reliable

Structure / Sequence+structure methods ?
• no good model for scores
• no good model for statistical significance

how will score grow with
• size of query ?
• size of alignment ?
• sequence composition ?
Principle

If you have extra information (structure)
- must be a good idea to use it

<table>
<thead>
<tr>
<th></th>
<th>sequence</th>
<th>structure based</th>
</tr>
</thead>
<tbody>
<tr>
<td>database size</td>
<td>4×10^7</td>
<td>10^5</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>slow</td>
</tr>
<tr>
<td>scores</td>
<td>good models</td>
<td>weaker</td>
</tr>
<tr>
<td>statistical significance</td>
<td>good or almost</td>
<td>weaker</td>
</tr>
<tr>
<td></td>
<td>good</td>
<td></td>
</tr>
</tbody>
</table>
Summarise and stop

- Use sequence information when possible
- use adventurous sequence methods when necessary
- use very speculative methods (sequence to structure) when necessary