Protein Fold Recognition / Weak Similarities

Why do we do sequence alignments?

- find related proteins
 - build models
 - guess at function

For some interesting protein

• sequence always available

What should one do with really weak sequence homology?

Two ideas

- how to search for very weak similarities
- can one take advantage of conserved structures?

Technical

- Searching for remote sequence homologues
- Sequence to structure alignments

Assumed knowledge

• Some memory of sequence alignment methods, score matrix, $O(n^2)$ cost

Mission

For some protein sequence – find as much as possible

- function
- build good model
- build a bad model

Vague information may be useful

- which residues are near active site?
- which residues are near a dimer interface?
- which residues are in weakly structured loops? (chemical modification)
- bad model may be enough for phasing (X-ray)

Approach

- start with most reliable methods
- add more speculative methods as necessary

Example

- simple sequence searches
- searches for more remote homologues
- searches for possible structures

Methods in other courses

• emphasis on speed (in Georgio's lectures)

alignment methods

	slow	fast					
methods	Needleman & Wunsch / Smith-Waterman	seeded – blast, fasta, suffix tree methods					
time	O(nm) or O(nm²) (sequence sizes)	O(nk) – database size					
guaranteed to find optimal alignment	yes	no					
very remote homologues	may work	less likely to work					

Does speed matter?

Slow methods

Methods for large databases are

- fast
- approximate

Here

- ultimate use is often a small database (PDB 9.7×10^4)
- computer time does not matter

In lab you have 1 or 10's of proteins

- each take weeks or months to work on
- if each search takes hours? no problem

Remote searches...

Remote searches

When to do this?

Assume simple (blast / fasta) search returned

- related sequences
- unknown function
- none of related proteins have known structures

Weak sequence similarities

Your sequence

ABDEFGHIKLMNPQ...

finds no helpful proteins. Try searching with a related protein

prot_1 $\mathbf{A} \mathbf{B} \mathbf{Q} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{R} \mathbf{I} \mathbf{S} \mathbf{L} \mathbf{T} \mathbf{N} \mathbf{P} \mathbf{Q} \dots$

finds a protein whose structure has been solved

Claim

- yours & prot_2 are related
- relationship too weak to see directly
- prot_2 can be used
 - to make a bad model, guess for function

Weak sequence similarities

- first idea
- take your protein
- collect related proteins
 - foreach (related protein)
 - do a sequence search
 - see if results change
- not practical
- not very systematic
- what else does one get from homologues?

Information from related sequences

- usually one finds many related sequences.
- consider details...

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAQVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAYWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAGWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAFWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAEWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAQVKGHG MLSPADKTNVKADWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQG VLSPADKTNVKACWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAQVKAHG VLSPADKSNVKAWWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAQVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAQWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSQVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG

06.01.2014 [10]

Conservation

If your sequence has a Q here, \

• may not be helpful to use it in sequence searches

```
L D D Q R Q S T R
L D A Q R A D S T R
V D D Q R R W S T R
A D D Q R C A S S K
I D D Q R D D S T R
L D D Q R E G S T K
L D D Q R F C S T R
```

- better to use the "average" residue at this point
- first have to find the "average" residue
- leads to method

Searching with profiles

• initial average_sequence = your_sequence while (step < max steps)</pre> search with blast using average sequence if interesting result (function / structure..) return results else update average sequence

- basis of "psi-blast"
- does it work?

Remote sequence searching

- much more sensitive than simple searches, but
- involves weaker sequence similarities, more errors
- alignment not perfect
- statistical significance harder to estimate
- possibility of finding unrelated sequences (rubbish)
- still relies on some significant sequence similarity
- can one move away from sequence similarity?

Why move away from sequence?

• if sequences provide information – use this

• if you are desperate...

Sequence alignments - implied structures

From sequence viewpoint

- ..AC-DEFG..
- ..QRSTVWY..

What if structure of second sequence is known?

- ...**AC-DEFG**... query sequence
- ..QRSTVWY.. known structure

Sequence to structure alignments

Remember how sequence alignments work

- similarity / substitution scores
- fill out score matrix
- find best path

Can we use this for sequence to structure alignments?

more exotic scoring

From sequence viewpoint

- ..AC-DEFG.. my sequence
- ..QRSTVWY.. a protein of known structure

rather than just align sequences, could I use the structure?

Score matrix?

sequence to structure scoring

I have to be able to place (A, C, D...) at each position and get a suitability score

Advantage:

- we claim that structure is more conserved than sequence
- can find appropriate/fitting/suitable structures for a sequence
- very remote, but homologues vorsicht !!!!

sequence to structure scoring

Define an energy function

- depends on interaction of residue with structure
 - easy
- depends on interaction with neighbours
 - but who are the neighbours?

Bad news

- we cannot even fill out a column in the score matrix
- to test every combination of neighbours
 - NP-complete

An excuse to try some approximations

	A C	D	E	F	G
1	?				
2	?				
3	?				
4	?				
5	?				
6	?				
7	?				

06.01.2014 [19]

approximations for scoring

Two problems

- we do not know where all the atoms are side chain coordinates
- to score "C" at each position we need to know neighbours

Side-chains: ignore / average

forget for these lectures

Neighbour positions - much harder

- environment description
- frozen approximation

A, C, D, or E ...

An example of profiles (case study)

We know

- certain sites are hidden from solvent (middle of protein)
 - only compatible with trp, phe, ile, ... (hydrophobic)
- some sites are involved in "salt bridges"
- some secondary structures are preferred by certain residues
- can one count the probabilities of residue types?

Overview

- collect list (parameterisation set) of proteins
- classify sites (18 types)
- collect probability of each residue type in each site type

For each site measure the Å² exposed to solvent

Sometimes one has charges / polar groups touching others

 measure fraction of buried area covered by polar groups

Define environments...

- 6 environment types
- 3 secondary structure types
 - α , β , others
- = 18 environments

Data collection

- 16 proteins
- find environment of each site
- count
 - how many times does one see residue type i in environment j = N(i, j)
- count how often does one see residue type i = N(i)

How unusual is a residue *i* in environment *j* ?

$$score(i,j) = \ln\left(\frac{N(i,j)}{N(i)}\right)$$

Final result? a big scoring table

ai resuit . a big se	ormg	ca	O1												u	nli	ik	ely	/		
]	lik	æl	y							,						
															\angle						
	Environment class	w	F	X	L	1	V	М	A	G	Р	С	Т	s	Q	N	E	D	н	κ	R
what one expects	Β ₁ α Β ₁ β Β ₁	1 17	0.85	0.07	1.13	1.47	1.09	0.55	-0.79	-2.02	-1.16 -0.94 0.26	-0.22	-1.12	-2.91	-1.67	-1.42	-1.93	-2.56	-1.91	-2.69	-1.16
	B ₂ α B ₂ β B ₂	0.01 1.02	1.18 1.05	1.06 1.12	0.76 0.84	1.31 0.81	1.06 0.60	0.64 0.90	-1.55 -0.66	-2.26 -1.66	-2.21 -0.49 0.19	-0.87 -0.05	-2.27 -0.76	-1.77 -1.17	-1.22 -0.76	-2.07 -0.66	-1.07 -1.35	-1.41 -1.28	-0.77 0.46	-1.14 -2.34	-0.20 -0.80
	B ₃ α B ₃ β B ₃	0.75 1.07	0.81 0.70	1.30 1.13	0.18 0.35	0.54 -0.17	0.56 -0.03	-0.57 0.23	-0.93 -0.96	-1.93 -0.98	-0.68 -0.34 -0.13	-0.54 -1.20	-0.44 -0.53	-0.74 -0.54	0.21 0.05	-0.24 0.04	-0.14 -0.36	-0.86 -1.05	0.82 1.01	-0.53 0.10	0.13 0.66
	P1 α P1 β P1	0.36 -1.26	-0.49 -1.20	0.17 -1.31	-1.03 -0.62	0.20 -0.23	0.46 -0.01	-0.27 -1.19	0.64 0.46	-0.82 -0.24	-0.25 -0.55 0.66	1.49 1.35	0.93 0.56	0.33 0.49	-2.27 -0.63	-1.32 -0.13	-0.73 -0.61	-1.07 0.38	-0.42 -1.12	-1.21 -0.74	-0.77 -1.29
	P ₂ α P ₂ β P ₂	-0.79 -0.82	-0.54 -0.86	-0.84 -0.51	-1.30 -0.70	-0.33 -1.09	0.13 -0.88	-0.72 -0.89	-0.55 -0.15	-0.98 -0.40	-0.26 -1.29 0.44	-0.57 -0.60	0.84 0.06	0.59 0.26	-0.08 0.27	-0.16 0.50	0.32 0.27	0.19 0.49	-0.87 0.13	0.59 0.44	0.10 0.30
	Εα Εβ Ε	1084		0.30	-1 RR	-1 47	-1 74	1-0 RR	0.06	1.46	0.04 -0.96 0.20	-0.24	0.14	0.65	-0.19	-0.06 0.41	-0.16 0.03	-0.78 0.22	-0.83	-0.52 -0.14	-0.49 -0.32

06.01.2014 [24]

Environment description - application

- given these descriptions use them
- take a protein structure label each site
- take sequence of interest
- for each residue
 - score at each site of protein
- score matrix
- find best path
 - sequence to structure alignment

Final application

- take protein databank
- try to align your sequence to every structure

Frozen approximation

Original problem

- we want to use a score function which
 - sensitive to sequence
 - sensitive to structure

Remember – original structure did have a sequence

- belief
 - if two proteins are related, the sequences will have similar properties
 - score with the residues of the original sequence

Frozen approximation

I can score my sequence in the environment of the known structure

sequence

ACDEFG

• good

the environment is well characterised

3 4 5

structure ¹

sites

 if my structure has polar residues here, they will go into the scoring function

6 7

- bad?
 - we use the sequence of template (known structure)
 - it may only allow very related residues
 - original aim was to move away from close sequences

Summary so far

- look for closely related templates
- try sequence based methods
- sequence to structure methods are definitely possible
- can I make better scoring schemes?

Scoring schemes

- how much structural information is hidden in sequence?
- look at a sequence
- I already have labels for sites
 - implicit in substitution matrices
- does the structure contain extra information? ...

Extra information from structures

Residues exist in a protein for different reasons

- gly is easy to substitute look at diagonal in blosum matrix
- in some turns, gly is essential
 - can only be seen from structure
- cys
 - sometimes a normal hydrophic residue
 - sometimes the geometry says it must form a disulfide bond
 - structure can say if there is another cys near in space
- ...
- it should be useful to combine sequence and structure information

Extra information from structures

Claim – hope

combination of methods has better signal / noise

Implementation? easy in principle

```
for each residue i in your query sequence for each site j in template calculate sequence score s_1 based on profile of i calculate structural score s_2 based on fitting residue type i into site j score for alignment matrix = s_1 + k s_2
```

for some constant *k*

In practice

- most fold recognition programs combine sequence terms and structural scores
- results may or may not be better than best pure sequence methods
- problems..

Problems with clever methods

Simple sequence searches

- good models for statistical significance
 - (is a related protein really related?)

Remote sequence searches (psi-blast)

statistics OK, but less reliable

Structure / Sequence+structure methods?

- no good model for scores
- no good model for statistical significance

how will score grow with

- size of query ?
- size of alignment?
- sequence composition ?

Principle

If you have extra information (structure)

• must be a good idea to use it

	sequence	structure based						
database size	4×10 ⁷	10^5						
	fast	slow						
scores	good models	weaker						
statistical significance	good or almost good	weaker						

Summarise and stop

- Use sequence information when possible
- use adventurous sequence methods when necessary
- use very speculative methods (sequence to structure) when necessary