NMR (Nuclear Magnetic Resonance Spectroscopy)

Literature / background (already in Stine)

• Ferentz, A.E. and Wagner, G., Q. Rev. Biophys, 33, 29-65 (2000) – in Stine

Current standing

- ≈ 11 % of current structures solved by NMR (10 618 structures, 9287 proteins)
- about 1/4 of smaller structures (<100 residues)

How many structures by NMR?

^{26/10/2015 [2]}

sizes of NMR structures in protein data bank

26/10/2015 [3]

What is coming

Background to NMR – chemistry

Calculating structures

- distance geometry
- problems with structures

For chemists: no

- chemical shifts
- 2D and higher
- residual dipole coupling, spin labels

• ...

History

Younger field than X-ray

• 1 ¹/₂ Nobel prizes (Ernst, Wüthrich)

First real protein structure about 1985 or 1986

NMR from our viewpoint

A way to get structures - our focus Can provide information on

- dynamics, stability
- interactions (other proteins, small molecules)

Overview – how we get coordinates

- protein in solution
- record spectra
- assign peaks to ¹H, ¹³C, ¹⁵N nuclei
- record some more spectra
 - distance information (mostly)
 - some internal angles
- reconstruct structure

Nuclei have spin

- have a charge and act like magnets
- put them in a field and they will align with it
- now apply a magnetic field
 - they "precess" around the field
 - two possible states

- B_0 is applied field
- ν speed of rotation (many MHz / 10⁶ Hz)

Do nuclei like fighting the field ?

Is a nucleus really happy facing the wrong way?

- what if we push it the wrong way ?
 - wants to get to low energy state emits a photon

What NMR records

Important nuclei (spin ¹/₂)

nucleus	sensitivity	notes
$^{1}\mathrm{H}$	1	cheap and natural
¹³ C	1.6×10^{-2}	expensive, but only 1% of natural abundance
¹⁵ N	10 ⁻³	not cheap, 0.4 % natural abundance
³¹ P	7×10^{-2}	DNA and other PO_4 chemistry, less protein

- but the natural isotopes are ¹²C and ¹⁴N
 - (usually) these isotopes require labelling
- Proteins
 - ¹H, ¹³C, ¹⁵N

NMR for us

- You get a spectrum (1D, 2D, ..)
- Where are the peaks ?
 - For chemists not this course
- We care about structural information
- This nucleus affects that nucleus
 - (field splitting, relaxation, ...)
 - Can be related back to structure

To calculate structures ?

Distance information / the NOE

Most important (NOE = nuclear overhauser effect)

- an effect which depends on how close in space nuclei are
- NOE $\propto r^{-6}$
- usually only up to about 5 6 Å

Story

- two spins' dipoles interact
- cross relaxation phenomenon

<u>† 1</u>

red relaxing (jumping to lower energy) affects black

Other structural information

- NOE information about short (< 5 or 6 Å) distances
- there is more angles
 - mainly *J* coupling

Amide NH to H^{α} coupling

${}^{3}J_{\rm HN\alpha}$ coupling

formalised as

Amide NH to H^{α} coupling

- can help distinguish α from β
- not always seen (exchange / motion)
- NH not always present
- other angles ?
 - other vicinal protons
 - C^{α} to C^{β}

61

180

Problems with J-coupling

1. we have a formula ${}^{3}J_{\text{HN}\alpha} = 6.4 \cos^{2} \theta - 1.4 \cos \theta + 1.9$ Measure *J*, solve for θ

- Most of the time, there is more than one solution
- Only use big *J* values

2. dynamics & errors in *J* measurement more serious than they appear ! look around –90°

Practical NMR

We have some basic methods

Real NMR

- more techniques
 - 2D and more
 - identifying specific kinds of atom
 - spreading peaks out

Information summary

phenomenon	assignments	structure	
chemical shift	important	not much used	not in Folien
spin-spin (J) coupling	important	torsion angles	
NOE	important	distances	

More spectroscopy

- filtering according to chemistry, atom types
- *n*-dimensional methods

Structural information

- labels for broadening / shifting peaks
- orientation of bonds to reference ..

Structures from NMR data

Available information

- distances
 - short (5 to 6 Å)
 - incomplete
- some dihedral / torsion angles
- does this define a structure ?
 - strictly no

Coming

- distances in 2D and 3D
- Distance geometry two versions

Determining distances (ideal)

 d_{ij}

- 2 points 1 distance
- 3 points 3 distances...
 - think of $3N_{atom}$ distances
 - remember $N_{atom} \approx 10 \text{ or } 20 N_{res}$

Underdetermined distances

Think in terms of triangles ...

- $d_{ik} < 6$ Å, $d_{jk} < 6$ Å
- where is *k*?

A few more distances...

• more and more distances are useful

Impossible distances

No overlap?

- experimental error
- nowhere for *k* to go

Real data

For N residue protein, maybe 5 N_{res} or 10 N_{res}

- want more like $3N_{atom}$ (30 60 N_{res}) distances if perfect
 - needs much more data...
 - lots of chemical data

Mission

- gather all experimental data
- mix in chemical data
- make all distance information as tight as possible
- put an upper bound on the distance between every pair of points
- put a lower bound on every distance (less important)
- somehow generate coordinates
- start with toys and triangles

Structures from distance information

Start in two dimensions..

• ein freundliches Dreieck

•
$$d_{ij} = 11$$
 $d_{ik} = 13$ $d_{jk} = 16$

- fix *i*, put *j* on *x*-axis and make coordinates
- solve analytically

Underdetermined data

Κ

• $d_{ij} = 11$ $d_{ik} = 13$ $d_{jk} = 12 - 20$ i 11 • more like NMR data 13 • unique solution? • no Κ 11 13

distance too small

$$d_{ij} = 11$$
 $dik = 13$ $djk = 1$

no 3D structure

Gathering data

- add in chemistry
- use to get more
 - mix chemistry + measurements
- what comes easily from chemistry ?

Gather as much data as possible

Simple, geometric information

- bonds standard
- angles standard
- simple distances from bond angles
- dihedral / torsion angles

$$d_{hk}^{2} = \left(d_{ij} - d_{hi}\cos\theta_{hij} - d_{jk}\cos\theta_{ijk}\right)^{2} + \left(d_{hi}\sin\theta_{hij} - d_{jk}\sin\theta_{ijk}\cos\tau_{hijk}\right)^{2} + \left(d_{jk}\sin\tau_{hijk}\right)^{2}$$

 $\operatorname{set} \tau = 0$

• minimum

 $\tau = \pi$

• maximum

How to get more distance information

More general / triangle inequality

What limits can be worked out?

upper bound $d_{jk} \le d_{ij} + d_{ik}$

lower bound

$$d_{jk} \ge \left| d_{ij} - d_{ik} \right|$$

Where to use triangle inequality

more general

26/10/2015 [39]

Most general triangle bound inequality

Triangle bound should be satisfied by any three points

- chemists
 - triangle bound smoothing
- informatik
 - all points shortest path problem

All points shortest path (Floyd)

Bound smoothing / Floyd

10

E

E

12

8

5

3

Distance matrix so far

We can build a distance matrix of upper limits

- consistent with all bonds and angles and other information
- Can do the same for lower bounds
- every pair of atoms
 - invent some lower bound (atomic radii)

Does this define a structure ?

Almost certainly not

• still no way to get to a 3D model

From distances to coordinates

How would you build coordinates from distances ?

- stepwise?
 - error prone, errors add
- history
 - early 80's
 - methods which are tolerant of errors
 - metric matrix method

Metric matrix method

- get best upper bounds
- get best lower bounds
 - guess distances between
 - \rightarrow trial distance matrix
 - convert to centre of mass matrix (metric matrix)
 - magic conversion to coordinates
 - if metric matrix has three positive eigenvalues
 - error free coordinates
- real coordinates
- lots of errors
- initial coordinates not healthy
- refine

Metric matrix method

- get best lower bounds + upper bounds
 - guess distances between

 \rightarrow trial distance matrix

- repeat *n* times
 - get *n* guesses
- some OK, some bad
- repeat until you have 20 or 100 OK structures
- OK = agrees with experimental data + chemically OK

Chirality

2D version

- can *not* be rotated on to each other
- can not be distinguished by distances

3D

- chirality is random
- problem ? no
 - flip all coordinates and check

Local chirality ...

overall chirality

- some points correct
- some wrong
- If you invert a site, will damage other parts of structure

The Optimisation problem

Find the coordinates that put atoms so they agree with experimental data

• cost *c* is $\sum_{i} (r_i - r_i^{measured})^2$ for each measured distance *r*

Distances and angles

longer distances depend on several angles

Distances and angles

Each angle affects many distances

- What does one know?
- simple optimisation will not work

Optimisation Strategy

Start

- concentrate on distances with few angles in between
- shorter distances become correct

Add in more distances

• re-optimise

Add in more distances

• ...

Variable target function

ideas from Braun and Gō, 1980s

Stepwise variable target function method

• Collect experimental data

distance	residue	atom	residue	atom	distance
in	1	1	2	2	in space
sequence					(Å)
1	5	Hα	6	H^{N}	4.0
0	8	Hα	8	Hγ	4.4
80	2	Hα	82	H^{N}	4.5
2	3	Hα	5	Hγ	5.0
1	7	H^{β}	8	Hγ	3.8
0	3	Hα	3	H^{N}	5.0

• Sort according to distance in sequence

Stepwise variable target function method

distance in sequence	1	atom 1	residue 2	atom 2	distance in space (Å)
0	8	Hα	8	Ηγ	4.4
0	3	Hα	3	H^{N}	5.0
1	5	Hα	6	H^{N}	4.0
1	7	H^{β}	8	Hγ	3.8
2	3	Hα	5	Hγ	5.0
80	2	Hα	82	H^{N}	4.5

Stepwise variable target function method

distance in sequence	residuo 1	e atom 1	residue 2	atom 2	distance in space (Å)	1 st	2 nd 3 rd	later
0	8	Hα	8	Hγ	4.4	Ι		I
0	3	Hα	3	H^{N}	5.0	ţ		
1	5	Hα	6	H^{N}	4.0			
1	7	H^{β}	8	Hγ	3.8		↓	
2	3	Hα	5	Hγ	5.0		ţ	
80	2	Hα	82	H^{N}	4.5			Ļ

Hope..

Variable target function vs metric matrix

Metric matrix *versus* variable target function

• proponents of both

variable target function probably more popular

• no problems with chirality

Real implementations of distance geometry

- not small programs
- Input?
 - list of protein sequence
 - set of distances
- most of code
 - libraries of standard amino acids
 - code to do geometry and work with standard geometries
- other information
 - angle restraints
 - convert to distances for metric matrix
 - natural for variable target function

Output from programs

Structure impossible ?

- program dies or
- best possible solution

Structure not determined ?

• set of possible conformations (10 to 100)

example 1sm7

Lots of models in a PDB file

- big difference compared to X-ray coordinates
- typical
 - ends (C- and N-termini) badly defined
 - loops poorly defined
- spectroscopists say this reflects mobility
- problems with many models
 - difficult to work with
 - arbitrary which to select for calculations
 - averaging usually not a good idea
- Is this the absolute truth ? No.
 - number of models arbitrary
 - different methods (programs /details) give different results

Finished with making coordinates ?

- structures may not be well defined
- can they be improved ? probably
 - restrained molecular dynamics (more next semester)
- normal MD $E_{phys}(\vec{r}) = bonds + angles + electrostatics ...$
- restrained MD $E_{total}(\vec{r}) = E_{phys}(\vec{r}) + E_{restr}(\vec{r})$

• and...
$$E_{restr} = \sum_{i} k_i (r_i^{struct} - r_i^{measured})^2$$

- where *i* refers to the distance restraint Mission - to minimise E_{total}
- result?
- structures
 - agree with restraints + low energy

What else can one do with NMR?

NMR sensitive to dynamics

• is this part of the protein mobile ?

Interactions

• add small molecule – which parts of spectrum change ?

Still more structural information

- residual dipolar coupling
- spin labels

Summary

- What information does one have ?
- Is it enough ? Is it consistent ?
- Two methods to generate structures
- Differences in handling chirality