Cluster analysis

Classification and prediction

Methods
- k-means
- hierarchical
 - nearest neighbour
 - divisive
- Übung
- Many methods – no perfect answers
Classification versus prediction?

Easy data two clusters
Classification versus prediction?

Easy data two clusters

Can this be predictive?

- put labels on
Try a prediction based on income

- the main goal
 - if we know of some properties, we can guess others
Problems

Easy data two clusters
• is it really?

Alternative?
Problems

Two clusters with sub-clusters?
Distance Measures (Euclidean)

For any two points

- want a distance /dissimilarity

Euclidean distance (easy in two dimensions)

\[d_{ij} = \left((x_i - x_j)^2 + (y_i - y_j)^2 \right)^{1/2} \]

in 3D \[d_{ij} = \left((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \right)^{1/2} \]

in nD \[d_{ij} = \left((x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 + .. \right)^{1/2} \]
Distance Measures (Manhattan)

- 2D \(d_{ij} = |x_i - x_j| + |y_i - y_j|\)
- nD \(d_{ij} = |x_i - x_j| + |y_i - y_j| + |z_i - z_j| + \cdots\)

Euclidean versus Manhattan versus ...
- depends on belief
- if one is lucky, results will not be too different

Worse cases
- category data
 - cars have
 - speeds, size, **colour**, 2 door/4door
 - not \(x, y\) continuous descriptor

- a possible Manhattan measure
A set of discrete descriptors

Identify properties
- make long bit-vector
- dissimilarity?
 - count matching bits
- typically $10^2 - 10^3$ properties
- crude?
 - enough properties that mistakes do not matter

Is this a Manhattan distance?
- probably

General versus Specific

When I know nothing
• invent distance / dissimilarity based on descriptors $x, y, ..$

If I know more, use an appropriate distance
• sequence example
 • Jukes-Cantor distance, p-value measure
• protein structures, metabolic pathways, small molecules
 • (geometric differences, similar reactions, bit strings)

Given some distances what are the methods?
Clustering Methods

- *k*-means
- hierarchical
- fuzzy (not here)
- large data sets (not here)

k-means

Pick *k* points - call them cluster centres

while (there is substantial change)

assign each data-point to nearest centre

re-calculate centres
k-means steps

1. **pick 3 points**

2. **allocate all other points**

3. **pick new centres**

4. **allocate all other points**
k-means problems

What is k?
• guess, experiment, preconception

Initial choice of cluster centres
• requires concept of cluster centre (mean)

• non deterministic

• convergence

Cluster shape
• what if red points become centres?
Hierarchical

Two flavours
• divisive
• agglomerative / joining / nearest neighbour

For n observations form n clusters (each point is separate)

while (not finished)
 find two nearest clusters (details later)
 join
agglomerative / joining example
Divisive

split into two (cluster)

-spli**t into two (cluster)

select two most separated points as centres of new clusters
for each point in cluster
allocate to nearest cluster centre

main procedure

all points in one cluster
while (not finished)
 find largest cluster
 split into two (cluster)

example
Divisive example
Breaking a joining method

Consider this data with an agglomerative method
• distances are important, not compactness

• is this always true?
breaking a divisive method

Method considers distances
• with this data
 • compactness of points is more important

In many problems
• we only trust measures of high similarity
• example
 • molecular similarity
 • very different versus very very different
More ways to break joining methods

Different forms of neighbour joining
• earlier – "single linkage"
• sometimes "complete linkage" – use biggest distance between clusters

• susceptible to outliers
• relevant to Übung
cluster distances

Many details not touched
• what is cluster distance? cluster centre?
• distance between clusters?

Distance between points is clear, but
• between point and cluster
• between clusters?

Sensible choices
• from cluster to nearest point
• from cluster to most typical point in other cluster
UPGMA

- in many bioinformatics texts
- unweighted pair group method using arithmetic averages
- take red points (5)
- take green points (2)
 - take average of all 2×5 distances
- debate over distance measures
 - similar to agglomerative versus divisive discussion
 - depends on structure of data
How complicated is clustering?

In practice

- distance based methods are best when a table of distances is available $O(n^2)$

Problem in most fundamental form

- unknown k-clusters
- combinatorial possibilities huge

Formalise our goal

- maximise density within clusters
- maximise distance between clusters
- should be able to distinguish
 - 2 from 3 cluster answers
Are we finished?

Lots of decorations

- iterations over cluster memberships
- different definitions of distances, centres

Mixing x, y, z continuous descriptors and categories (red/blue/..)
Dendrograms

- assumption of hierarchy
- what you call the "classification" depends on where you want to cut tree
- protein shape example
 - most detailed level
 - very similar protein sequences
Applications - sequences

Sequence comparison
- distances?
 - evolutionary estimates or
 - similarity based on statistics (p-values)
 - clear model (evolution) - suits hierarchy

- related sequences
 - distances OK
- less related sequences
 - time estimates unreliable (J-C model)
 - alignments unreliable
Applications - protein structure

3 proteins of similar size
- 1bww and 1mqk easy (immunoglobulins human/mouse)
 - not easy to compare against 1dlw (globin shape)

<table>
<thead>
<tr>
<th></th>
<th>1bww</th>
<th>1mqk</th>
<th>1dlw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1bww</td>
<td>0</td>
<td>easy</td>
<td>?</td>
</tr>
<tr>
<td>1mqk</td>
<td>0</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1dlw</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications - protein structure

Are we lost?
• easiest to tackle problems with joining methods

Applications - microarray data

What are microarrays?
• little slabs with pieces of DNA bound
microarrays

- lots of bits of DNA from known genes (complementary)
- pour on a sample from cells with mRNA
 - some binds
 - detect by fluorescence
 - have a look which bits of DNA on chip were affected - tells us which genes were involved
 - we know which genes were activated in the original soup
microarrays

- feed sugar to cells
 - pour on to microarray - who lights up?
 - boring
- feed lipids to cells
 - who lights up
- feed ... to cells
- starve cells, heat cells, find cells with disease

Are there groups of genes whose regulation is similar?
- should let you find genes in pathways / regulation mechanisms
protein structure

Simulate a protein molecule and see 10^8 configurations
- is the molecule constantly changing or sometimes leaving and returning to conformations?
- does not look like much..
 backbone atoms only
- long molecular dynamics simulation
 - 4 major clusters selected
 - each represented by centre + two outliers
Distance measures – common theme

- similar protein structures
- similar sequences
- cells with similar behaviour

- closer relationships are more reliable
Summary

• Rarely is there a correct answer
• Method of choice may depend on data

Best case
• reliable distances known between all points

Real problems
• noise / outliers

Distance measures
• close relationships are usually more reliable

Running time?
• $O(n^2)$ for dissimilarity matrix
• method dependent - usually less than $O(n^2)$