Nucleotide Design

Mission

- design large structures from DNA
- design smaller from RNA

Different to protein design

- conformations
- energies...

Rothemund, P.W.K., Nature 440, 297-302 (2006)

Energies

True physics

- atoms interact with each other (electrostatics, Lennard-Jones, bonds..)
- works for proteins, nucleotides, old shoes, ...

What happens here?

use approximations to catch most important effects

Protein

- approximations that capture the important physical effects
 - "fitting" to backbone, fitting with each other

Nucleotides - what is important?

• Hydrogen bonds and stacking - first H bonds

DNA very idealised

DNA backbone is not so smooth

DNA all atoms

DNA with Hydrogen bonds

Energies – base pairs

Base pairing

- GC 3 H bonds
- AU 2 H bonds

Sequence is happier with more GC

• not so simple (later)

H bonds and base pairing

DNA philosophy – dominated by base pairing between two strands

• RNA –usually single stranded – folds up on itself, base pairs

Base pairing is very important

• try to form GC, AT pairs (DNA) or GC, AU pairs (RNA)

Is it the only important thing?

• aromatic ring stacking, π -stacking, base-stacking, ...

Base stacking

as on previous slide

Summarise energies

Just approximations – there are much better models for physics

Base-pairing

- important
- GC vs AU or AT

Stacking

• energetically favoured – structures are happy when they are regular and put bases on top of each other

Using energies

Literature (not physics)

DNA

• just optimize base pairs (ask why later)

RNA

- base pairs
- stacking or
- count a contribution to loop

RNA Design

What does RNA do?

- old view information
- modern information +
 - catalysis
 - binding / regulation
- likes to form double helices within -

one molecule

much more flexible than DNA

RNA Design

Similarities to protein design

- want to design compact structures from one strand (chain)
- size of problem?
 - $4 \times 4 \times 4 \dots = 4^n$ and a transfer RNA is about 75 bases (4^{75})

Special properties of RNA (contrast with proteins) – details coming

- 1. 2D description
- 2. simpler energy models
- 3. structure prediction

proteins

• 3D structures

RNA

• 2D literature

2D model consequences

proteins?

an amino acid has n neighbours (n is some small number)

RNA

- neighbour across the base pair
- neighbour up and down in sequence or
- no neighbour (count loop contribution)
- for a given structure number of neighbours is very small
- no sidechain geometry (ignored / averaged)

2. RNA - simple energy model

Proteins

• nearly always distance dependent - $\frac{q_i q_j}{4\pi \varepsilon r_{ij}}$, $4\varepsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right) \dots$

RNA

• discrete – what are the bases in a particular interaction?

easier problem – do not have to worry about details of conformation

3. RNA structure prediction

Proteins

cannot really reliably predict structure

• change an amino acid and have no idea what will happen

RNA

- different philosophy
- claim
 - you can predict 2D structure

 structure prediction is used in the design process (later)

3. RNA structure prediction

- find optimal start of loops
- grow, allowing for gaps
- check for better scores by splitting loops Result
- can find optimal 2D structure in $O(n^3)$ time

Is this true? Can one really predict RNA structure?

- as posed
 - yes deterministic, optimal set of base pairs for a given score function
- physically
 - no 20 25 % of predictions are very wrong
- does it matter? for today no. Imagine we can predict structure

The energy model

- GC pairs score very well
- AU pairs score almost as well
- GU pairs score a bit
- neighbours in the chain get a score if they are in a helix
- details we ignore

Finally a design algorithm...

Towards sequence prediction

version 1, simple Monte Carlo

```
S = random sequence
while (not happy)
      change a base (S_{trial})
      calculate \Delta E
       if \Delta E < 0
             accept S_{trial}
      else
             r = rand (0..1)
             if \exp\left(\frac{\Delta E}{T}\right) > r
                    accept S_{trial}
```

why is this bad?

Problems with simple Monte Carlo

- 1. size of search space
- 2. negative design

Search space

- split molecule into pieces
 Optimize separately and hope for no interactions
- 2. do not pick sites to change randomly When generating S_{trial} , pick sites with wrong base pairing other words

try not to break sites which seem happy

Negative design

- negative design = problem with alternative folds
- problem
- GC has 3 Hydrogen bonds, AU has 2 what would be your solution?

same sequence – two answers energies almost the same

negative design - the problem

Same sequence – two equally good solutions

More generally

naïve GC rich solutions will have alternative folds

What is negative design?

 find a sequence which will not fold to wrong structure

New version of selection criterion – select for

- energy
- not folding wrongly

Final RNA design method

```
[ break into pieces ]
initial sequence simple energy
while (not happy) model 0(n³) method
change residues
calculate energy - reject ?
calculate structure - accept / reject
```

Does it work? – self indulgence

a designed sequence

red means not in a base pair

• base pairs a mixture of GC and AU

not a simple looking sequence

Enough RNA

RNA vs DNA

Chemical difference is small DNA

- much less flexible
- nearly always helical

RNA (C)

DNA and templated design

Longer term aim – design long relatively simple shapes build scaffolds, boxes, ...

scaffold philosophy

10³ bases – natural DNA

details of first DNA origami

DNA origami

Remember DNA is most stable as a double helix

decide on shape

fill with cylinders 20 Å thick $length \times \frac{10 \frac{2}{3}}{36}$ bases

One long strand runs along structure

Every ½ turn brings other chain into position for crossing over...

place joining strands (staples)

then join the staples into longer pieces..

detail every base is paired

Next look at staples and join them

basically a long double helix one long strand lots of staple/joining strands

details of DNA origami

- program makes list of staple sequences
- units?
 - helices are in units of ½ turns

Self assembling

• throw long strand + joiners into a bucket and let it reassemble

where are we?

In this style of design

- long DNA strand is
 - taken from nature (phage)
 - not really designed
- short staple strands
 - are designed
 - staple / heften / hold together the long strand in some shape

negative design

Where is the "negative design"?

- you have a large natural piece of DNA no repetitive elements
- staples fit to a specific part of long strand not to other parts

Is this true?

- true enough (procedure works next slide)
- what really happens building structures takes hours not seconds
 - joining staples match best to target regions weakly elsewhere
 - gradually cooling a system lets staples usually find best match

Summarise some properties

	DNA	RNA
	nano-scale	molecular structures
catalytic activity ligand binding	rare	common
	template design	de novo

	DNA	RNA
	double stranded	single / sometimes double
	GC, AT	GC, AU (+more)
	stable	not stable very sensitive to RNAse can be modified 2'-0 methylation
ΔG energy per base per stack, kJ Mol ⁻¹	-1.4	−3.6 to −8.5
synthesis	cheap	not so cheap up to 100 bases

Summary and stop

Remember differences

- protein vs nucleotide
- RNA versus DNA
- philosophy of energy functions
- differences scaffolded and *de novo* design
- could you design absolutely everything using a scaffolded method?