Correlated Mutations – structure prediction

Structure prediction – grand challenge

- Sequence information is always easy to get
 - can one go from sequence to structure?
- simulations, neural networks, predictions of properties like secondary structure
 - no great success

Belief

• predict which residues are near each other – predict folding of protein

This topic

- look at a sequence and related sequences
- use information from sequences to guess which residues are near each other

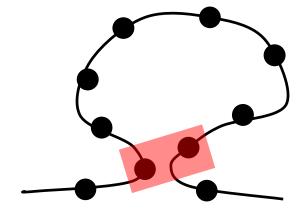
Correlated Mutations – structure prediction

Normal lectures

- multiple sequence alignments we assume
 - columns are independent of each other

Here

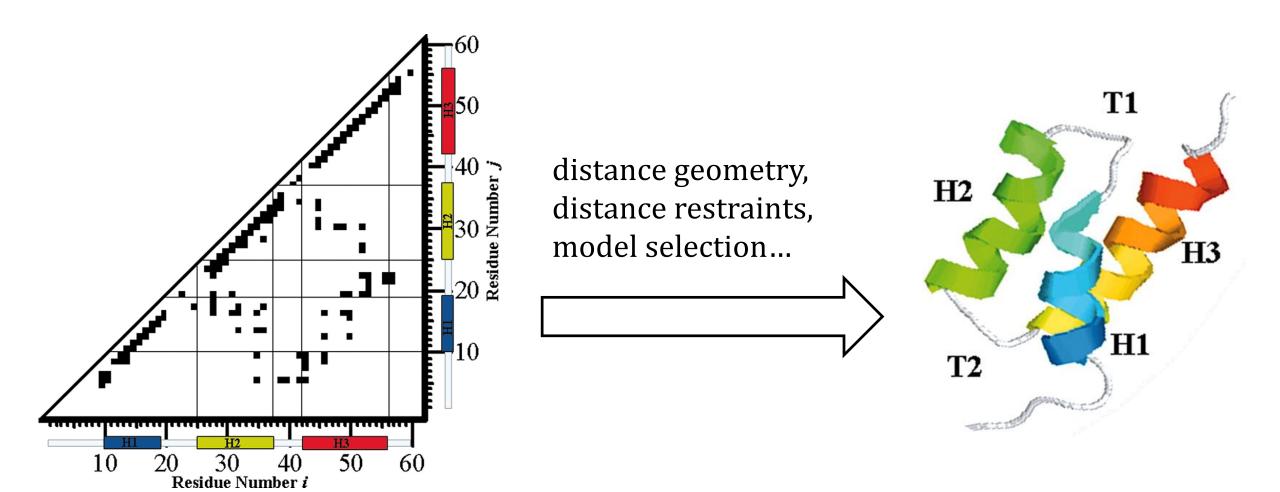
- columns do not mutate independently
- mutation in two columns are correlated, sites are near each other in space
 - source of structural information



VLSPADKTNVKAAWGKVGAHAG<mark>E</mark>YGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAQVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MI.SPADKTNVKA AWGKVGA HAGEYGA EAWERMET, SEPTTKTY EPHEDT, SHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAYWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAGWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAEWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAOVKGHG MLSPADKTNVKADWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQG VLSPADKTNVKACWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAOVKGOA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MI.SPADKTNVKA AWGKVGA HAGEYGA EAT ERMET, SEPTTKTY EPHEDT, SHGSAOVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAOVKAHG VLSPADKSNVKAWWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAOVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSPADKTNVKAOWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSQVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAQVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAYWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAGWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAFWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAEWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAQVKGHG MLSPADKTNVKADWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQG VLSPADKTNVKACWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAOVKAHG VLSPADKSNVKAWWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAQVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAQWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSQVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

from distances to contacts



History

Idea from 80's or earlier*

- regular literature in 90's, 2000's
- little real success

Around 2010/2011

new developments

^{*}Altschuh D, Vernet T, Berti P, Moras D, Nagai K (1988) Coordinated amino acid changes in homologous protein families. Protein Eng 2: 193–199.

How important is it?

"epistasis, that is, instances when substitutions that are accepted in one genotype are deleterious in another" *

"we show that the observed dN/dS values and the observed patterns of amino-acid diversity at each site are jointly consistent with a non-epistatic model of protein evolution" **

How important?

Depends who you ask

^{*}Breen, MS, Kemena, C, Vlasov, PK, Notredame, C., Kondrashov, FA, Nature, 490, 535-538, 2012 "Epistasis as the primary factor in molecular evolution"

^{**} McCandlish, DM, Rajon, E., Shah, P., Ding, Y, Plotkin, JB, Nature, 497, 2012, E1, "The role of epistasis in evolution"

Alignments and noise

What is noise?

do all bad mutations disappear?

• what if there is $\frac{1}{100}$ chance of mutation being fixed?

- biological weirdness / unusual environment
- sequencing errors

VLSPADKTNV

VLSPADKTNV

MLSPADKTNV

VLSPASKTNV

LVSPADKTNV

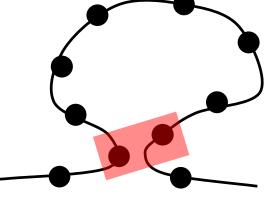
VLSPDDKTNV

•••

Imagine we work with 500 – 10³ sequences

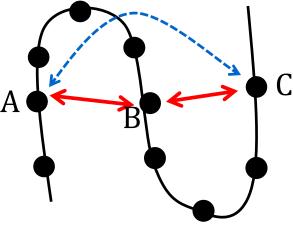
- you will see amino acids that you cannot explain
- not everything you see should be interpreted in physical terms

Does correlation mean proximity?



Indirect effects

A↔B ↔C
 A / C are correlated



- connected via structure (obvious)
- connected via substrate (less obvious)

How do we look at correlations?

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
WLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
WLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSAADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSAADKTNVKAHWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSAADKTNVKABWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSAADKTNVKABWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSAADKTNVKABWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGGHAGGYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VLSADKSNVK

Why talk about entropy?

Entropy in a molecule

• if entropy is low, conformation at t predicts conformation at $t + \Delta t$

Entropy in a string of characters aabbbbaaaaa vs qacsubd

• if entropy is low, this character might predict the next one

What about this observation predicting behaviour at another site?

cross entropy

Entropy / Information

normal entropy

$$S = -k \sum_{X}^{n_{states}} p_X \ln p_X$$

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHIDLSHGSAOVKGHG VITP-EQSNVKAAWGKVGAHAGEYGAEAIEQMFLSYPTTKTYFP-IDLSHGSAQIKGHG MLSPGDKTQVQAGFGRVGAHAG--GAEAVDRMFLSFPTTKSFFPYIELTHGSAQVKGHG VLSPAEKTNIKAAWGKVGAHAGEYGAEAAEKMF-SYPSTKTYFPHIDISHATAQ-KGHG -VTPGDKTNLQAGW-KIGAHAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHG VLSPAEKTNVKAAWGRVGAHAGDYGAEAGERMFLSFPSTQTYFPHIDLS-GSAQVQAHA VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHIDLSHGSAQVKGHG

- forget *k*
- first column no variation S=0

• second ..
$$p_D = \frac{5}{7}$$
, $p_E = \frac{1}{7}$, $p_N = \frac{1}{7}$ so $S = -\left(\frac{5}{7}\ln\frac{5}{7} + \frac{1}{7}\ln\frac{1}{7} + \frac{1}{7}\ln\frac{1}{7}\right)$

$$S = -\left(\frac{5}{7}\ln\frac{5}{7} + \frac{1}{7}\ln\frac{1}{7} + \frac{1}{7}\ln\frac{1}{7}\right)$$

Usual interpretation

conservation

Other words

I try to avoid using "information" is it S, -S, $\log n - S$?

- how much information is present?
- how good a predictor is this sequence for that sequence?

$$I_{ij} = \sum_{X}^{n_{states}} \sum_{Y}^{n_{states}} p_{ij,XY} \ln \frac{p_{ij,XY}}{p_{i,X}} p_{j,Y}$$

consider
$$\ln \frac{p_{ij,XY}}{p_{i,X} p_{j,Y}}$$

- how often would you expect to see X and Y together by chance?
 - depends on the amount of X and Y

If there is no "mutual" information, $\frac{p_{ij,XY}}{p_{i,X} p_{j,Y}} = 1$ and $\ln 1 = 0$

• if they mutate independently, I = 0

What are we measuring?

- how much site *i* determines *j* (and vice versa)
- note summation over all *XY* pairs ..

Problems with mutual entropy

$$I_{ij} = \sum_{X}^{n_{states}} \sum_{Y}^{n_{states}} p_{ij,XY} \ln \frac{p_{ij,XY}}{p_{i,X} p_{j,Y}}$$

$$\sum_{X}^{n}\sum_{Y}^{n}...$$

- $20 \times 20 = 400$ pairs
- need lots of data (1 000 sequences)
 - will encounter unusual sequences

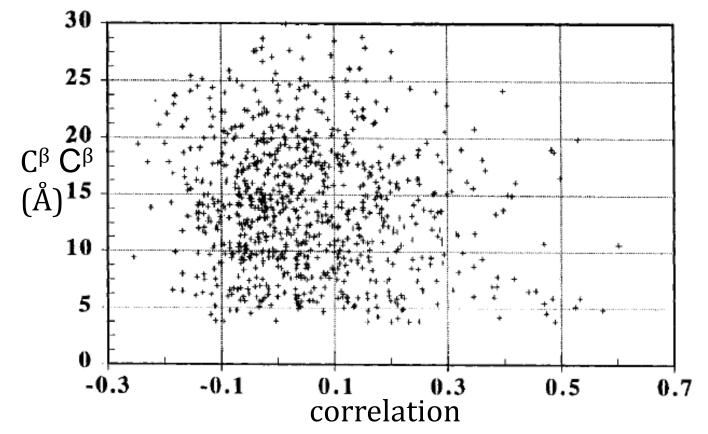
Noise: What will most pairs be?

- at most sites, many $p_X \approx 0$ (you do not find trp on surface or asp in middle)
 - if $p_X \approx p_Y \approx 0$ then $p_{i,X}p_{i,Y}$ very very small
 - the fraction $\ln \frac{p_{ij,XY}}{p_{i,X}p_{j,Y}}$ will be very sensitive to noise (unusual sequences)

Does it work?

"predicted contacts in a small protein are

fairly accurate"



^{*} Göbel, U, Sander, C, Schneider, R, Valencia, A, Proteins, 18, 309-317 (1994) Correlated mutations and residue contacts in proteins

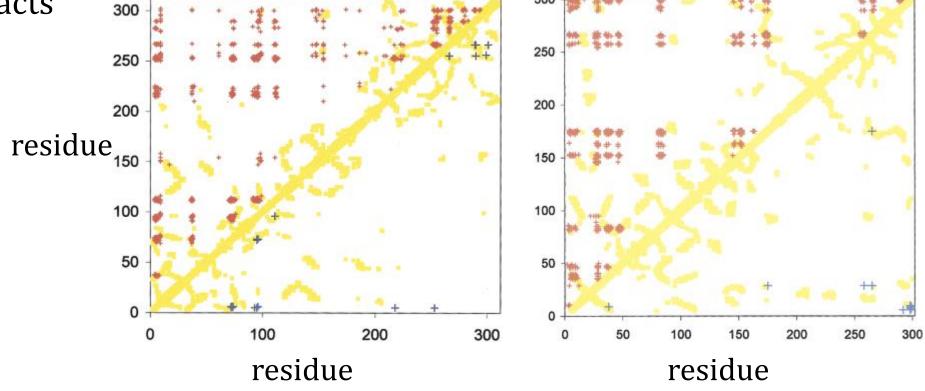
A few years later

Good show from two proteins

• red – predictions

• yellow – real contacts

What has changed?

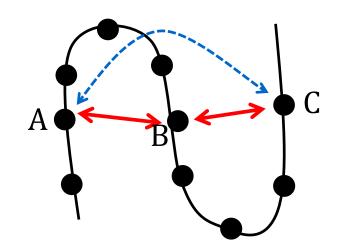


transitive correlations

Transitive = indirect = via a neighbour

Transitive: $A \leftrightarrow B \leftrightarrow C$ indirectly (transitively) $A \leftrightarrow C$

- visit all pairs of columns in alignment
- make list of correlated pairs
- sort list
- use *n* most correlated pairs
- why will it not work?



Simple fix does not work

	D :			$\boldsymbol{\mathcal{C}}$
imagine	D is	on	sur	tace

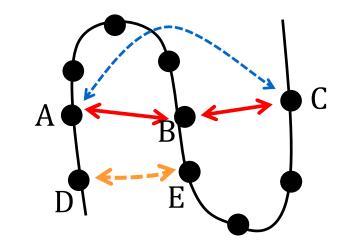
• varies a lot

BC

• swaps asp⇔glu or ser⇔thr AC

• cross correlation DE is weaker than AC DE

DE will be removed before the transitive relation (AC)



Residue similarities

asp/glu, asn/gln, ser/thr, ile/leu, ...

• The sorted list will only be a weak indicator of how direct relations are

The statistical problem

Earlier

$$I_{ij} = \sum_{X}^{n_{states}} \sum_{Y}^{n_{states}} p_{ij,XY} \ln \frac{p_{ij,XY}}{p_{i,X} p_{j,Y}}$$

- assumes that residues and pairs are independent of the sequence they are in...

 ABCIEFGIJKLM
- but I depends on ABC-EFG... and I.. J on ABC-EFG..
- this effect is not small
- can one account for background distributions?
 - properly?
 - too expensive
 - approximations...

covariance

Principle problem .. our $p_{X,i}$ and $p_{XY,ij}$ do not account for background (rest of sequence)

• treat in an average manner

What would you expect if everything was independently distributed?

$$p_{XY,ij} = p_{X,i} p_{Y,j}$$
 or $p_{XY,ij} - p_{X,i} p_{Y,j} = 0$

• difference from what you expect is the key.. define a covariance matrix $C_{ij} = p_{XY,ij} - p_{X,i} \, p_{Y,j}$

covariance - 30 s Denkpause

 $Now C_{ij} = p_{XY,ij} - p_{X,i} p_{Y,j}$

Huge difference to earlier version

- before $I = \sum_{X}^{n_{states}} \sum_{Y}^{n_{states}} p_{ij,XY} \ln \frac{p_{ij,XY}}{p_{i,X} p_{j,Y}}$ one number for pair of columns i,j
- now matrix C_{ij} ... more informative, but not so practical
- Before one number tells me about correlations between columns
- Now a matrix splits this into different amino acid types

from matrix to single number - example philosophy

several approaches (details not for exam) if C tells me how objects move together C^{-1} tells me about the couplings

Here

- C_{ij} tells me how amino acid types in columns i, j move together (from expected values)
- C_{ij}^{-1} tells me how they are coupled (elements tell me about specific amino acids)
 - if columns move independently C_{ij} will not have off-diagonal elements
- if C_{ij}^{-1} has lots of non-zero elements, there are lots of couplings
- Primitive sum up the elements of C_{ij}^{-1}
- sounds better: use ℓ_1 norm coupling/contact = $\sum_{X}^{20} \sum_{Y}^{20} |\Theta_{ij}^{XY}|$ where Θ comes from C_{ij}^{-1}

summarise the steps and ideas

- mutual entropy sounds good, does not account for dependencies on whole sequence
- covariance matrix approach much much better
 - remember idea of $p_{XY,ij} p_{X,i} p_{Y,j}$
- need some way to go from covariance matrices to estimates of connections between columns in multiple alignment
- does it all work?

from contacts to structure

Most obvious route

extract contact predictions

Then

• use as C^{β} C^{β} restraints – distance less than 8 Å

maybe

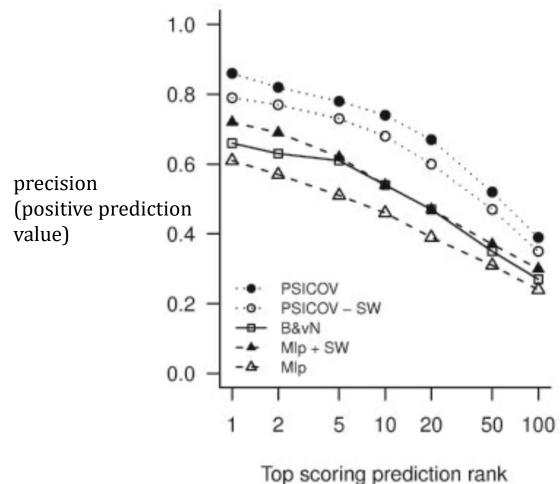
• use as restraints in an MD simulation

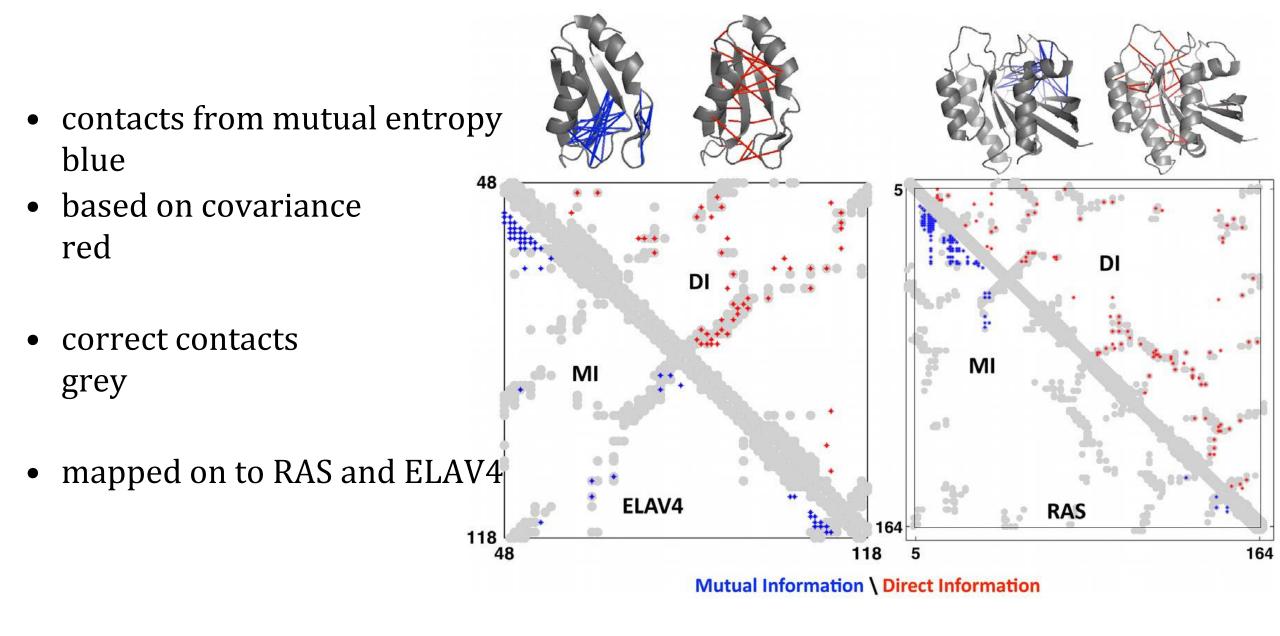
or

• use speculative fold recognition method and see which answers are plausible Consider how many predicted contacts seem to be correct

150 proteins

- predicted contacts
- rank by confidence
- compare with known structures
- another group showing contacts on structure ...

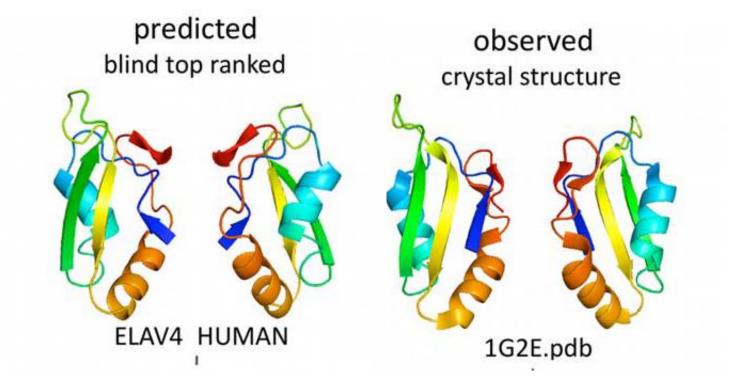




calculating structures

Method

- contacts from multiple alignment
- secondary structure prediction
- distance geometry + refinement
- + more examples
- looks too good



Is the problem solved?

To come..

- how many sequences?
- noise
- proteins to apply it to
- phylogenetic affects / sampling

How many sequences?

Two examples

- 500 to 74×10^3 choose by some criterion of similarity
- 10³ chosen arbitrarily

Will the number of homologues affect results?

see the importance by just looking at entropy

Entropy and number of homologues

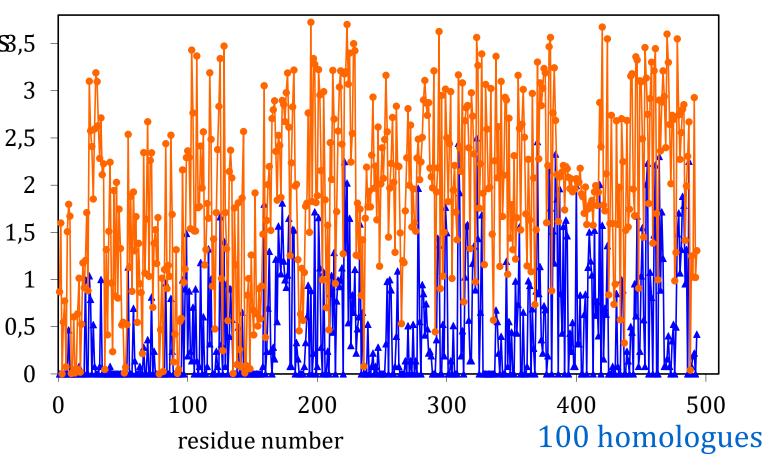
Example sequence (1ab4, DNA gyrase)

- find 100 close homologues (mostly > 80% similarity)
 - calculate conservation

find 2 500 close homologues,5
 (mostly > 50 % similarity) 3

calculate conservation

 how many changes you see depends on how many homologues you have



2 500 homologues

Noise

• unusual sequences, errors, unusual environments

Evolution

- random events with some selection
- if I have many many random parameters some will always appear coupled
- I find a p-value of 10^{-3} must it be significant?
- what if I look 10⁵ times?

Applicability

Does the method really work?

nobody knows

Applications in literature

- 1000s of homologues
- usually a crystal structure was solved use modelling

Phylogenetic and sampling effects

In an alignment column you see

.A..

.B..

.A..

appears to be random A/B

.A..

.B..

.A..

• informative site?

.A..

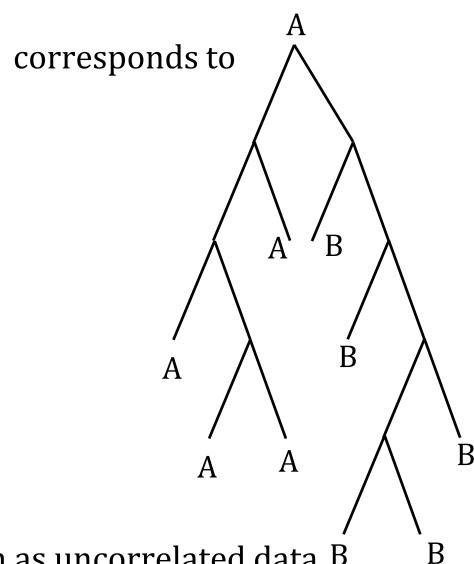
.B..

but with known tree...

.B..

• there was only one evolutionary event

counting data down each column treats them as uncorrelated data B

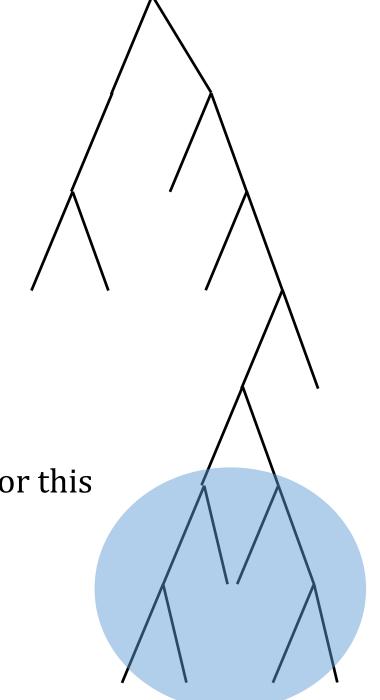


Sampling

Not even across nature

- green area
 - "late radiation"? (evolution)
 - model species (fruit flies, *E. coli*, ..)
 - some clinical bacterium
 - important
 - cheap to sequence

• the practical schemes use *ad hoc* methods to account for this



Final applications

- very applicable to RNA
- protein domain interactions
- protein-protein interactions

summary

Correlated mutations – long history

• much promise in last 3 – 5 years

Mutual information/entropy methods vs covariance

transitive versus direct relationships

Problems

- how many homologues
- noise
- phylogenetics / sampling
- need lots of data
- not proven on unknown cases