Intrinsically Disordered Proteins

Are proteins always structured?

instrinsically disordered, natively disordered, natively unstructured.. Can a protein have no structure and be useful ?

The real question

- are there proteins which do something (message, catalysis)
- have almost no fixed structure in solution
- maybe take on a structure when they meet a ligand or other protein ?

Fashion

A trendy discovery

Why discuss them ?

Claim

- there are proteins whose native structures we will never see
- might adopt a conformation when they bind something
 - DNA, other protein, other ligand
- contradict classic belief function requires well-defined structure

Maybe they are important - claim

• 44 % of human protein-coding genes have a disordered segment more than 30 residues long

What do they do ?

- molecular recognition, molecular assembly, protein modification, and entropic chains
- sites for modifications (phosphorylations, cleavage, ..)

What properties would you expect?

The features that you see from non-native, unhappy proteins

- gel filtration not sharp peaks
- proteases very susceptible
- folding / unfolding curves no specific unfolding temperature as with most proteins

The difference ?

• despite appearing unhappy, they still have some function

Example functions - enzymes

Could you have an enzyme with little structure?

- normal picture
 - well-defined structure positions groups in space so they catalyse some reaction
- bad examples
 - RNase E has structured domain + large unstructured region
 - hepatitis C virus NS3 protease Zn²⁺ necessary to fold and make active
 - is there evidence that the unstructured protein does anything interesting?

Example functions - binding

- DNA binding proteins take on structure only after binding
- targets for modification maybe being exposed makes them easier to phosphorylate, acetylate, ...
 - these changes lead to activation / inactivation
- small ligand storage.. Zn²⁺ example coming

What is disorder ? When is it significant ?

uncertainty

typical NMR structure

- 50 models
- some parts of structure well-determined
- some very mobile
- just a feature of NMR ?

B-factors

- better measure of mobility
- crystallographers have always known that some parts of structure are mobile
- what about really mobile ?

Mobile pieces

History of structures like chymotrypsin

- easy to obtain, crystallise
- lots of structures
- always missing regions
- almost all chymotrypsin structures have this region
 - does not seem to be an experimental artefact

do intrinsically disordered proteins exist?

In perspective

- all atoms move at room temperature
- some parts of a structure are relatively unrestrained
- are there large parts which are unrestrained under normal conditions?

Why be suspicious

Why do you not see structure ?

- It is easy to denature some proteins
- most proteins are marginally stable
- speak to a molecular biologist my protein does not fold
 - because the protein is unfolded when native (intrinsically unfolded) or
 - you have wrong conditions ?

What are conditions ?

- cells are very crowded
- sometimes exotic
 - organelles (mitochondria low pH)
 - electric fields near membranes (think of nerve cells)

What if you do not see structure

NMR

- NOE's distances between residues
- not easy to measure
- signal to noise
- technical reasons for not seeing NOE (τ_c correlation time bad luck)
- your sample is bad

Crystallography

• not easy – most proteins need slightly unusual conditions

What if I do not see structure ?

• maybe measurements are under wrong conditions

What does unstructured mean?

Most chemistry is an equilibrium

- folding $\Delta G = RT \ln \frac{\text{[folded]}}{\text{[unfolded]}}$
- ΔG is usually small

• if
$$K_{fold} = \frac{[folded]}{[unfolded]} = 10^3$$

the unfolded is like a 1 in 1000 inpurity

- if $K_{fold} = 1$
 - then your protein is 50% present, might be enough to work
 - may not look structured in NMR, may not crystallise
- does this explain "transient structure" ?

What would you see experimentally

- crystallography ? nothing boring
- NMR? What you see from denatured proteins
 - broad lines
 - no NOEs (distances)
 - evidence of mobility ?

Better

• measurements that look at overall shape

• radius of gyration $r_g = \left(\frac{1}{N}\left(\sum_{i=1}^{N} |\vec{r_i} - \vec{r_c}|^2\right)\right)^{r/2}$ where $\vec{r_c}$ is centre sum over *N* particles

• light scattering, small angle x-ray scattering (SAXS)

Example...

src-kinase

- certainly can find evidence of lack of structure
- Krattky plots for
 - globular domain
 - unstructured domain
 - the two in one chain

What must the energy landscape look like ?

Energy landscape

what would one need for this kind of landscape?

Flat energy landscape

- Two possibilities
- 1. particles like to interact with each other, but they do not care with whom

2. particles interact with solvent some detail

Particles interact with each other

Non-specific

- a particle interacts equally with many other sites
- simplest extreme example
 - (leu)_n or (trp)_n each hydrophobic residue likes to pack with other hydrophobic residues
 - would not be soluble
- maybe realistic
 - "low complexity"
 - similar sets of residues repeat
 - DSKDSKDSK...DSKDSK...
 - lots of interactions of similar energy
 - statistically many proteins have regions of low complexity

particles interact with solvent

if side chains are very soluble, there is no hydrophobic core

- does it happen ?
- prothymosin α (nuclear protein, interactions with chromatin, histones)
 - 109 residues, half are glu or asp, charge -54 at neutral pH
 - normal proteins have a small charge
 - binds lots of metal⁺ ions in a cell, has smaller r_g when Zn^{2+} present
 - other histone binding proteins have acidic domains
 - what will happen at low pH?

 r_g radius of gyration

What else do we know?

People collect lists – there are databases of disordered proteins

Sequence properties of intrinsically disordered proteins

- rich in polar and charged amino acids
- less than usual bulky hydrophobic

Best property...

0.6 average absolute charge ^{0,4} 0.2 -0.0 -

Uversky, Biochim Biophys Acta, 2013, 1834, 932-951

Can one predict disorder

For building and testing methods, one needs test set

• lists of largely disordered proteins *vs* normal proteins with known structures people collect these

OR

- take set of PDB crystal structures with B-factors
 - high B-factors = less rigid
 - try to predict B-factors

What descriptors would you use ?

Typical prediction method

Features

- 1. sequence complexity
- 2. hydrophobicity
- 3. charge
- 4. single residue propensity

a few words on each ...

low complexity

example

something like

 $c = -\sum_i p_i \ln p_i$ visiting each site over window of ≈ 40 residues p_i is the frequency of each amino acid type *i* in the window

• summing over all overlapping windows gives per residue score

hydrophobicity and charge

- literature values for hydrophobicity (easy)
- charge very easy

single residue propensity

- forget physics and chemistry just look at statistics
- visit all sites in protein data bank
- for each type of residue
 - collect average B factors
 - call this disorder propensity
 - residues missing in crystal structures are called "very disordered"
- end result ? table with big variation / error bars
- likelihood of an amino acid type to be disordered

predictions

Methods

- neural networks, support vector machines (SVMs)
- classifiers (trees, bagging + boosting)
- elegant statistics ?

What comes out?

• first, how do you measure it

Predictors – ROC curves

How good is your predictor?

• that a medication works, that a signal is real, that amino acid is disordered?

A good predictor

• the first 8 predictions are correct, then one wrong, then...

A bad predictor

• the first 1 is correct, next is wrong, then 1 correct, then one wrong..

Turn this into a curve

- When 1 % of my predictions are wrong, how many are correct?
 - when 2 % of my predictions ...

How good are predictions?

interpretation

No surprises

• we already knew that charge and hydrophobicity were good predictors

Is any of this real?

• It is very fashionable (100s of literature articles)

Imagine a protein has

- little structure in test tube, finds structure when binding DNA, other protein
 - is this really different to a protein which is more structured in test tube + changes structure a bit upon binding ?
- What if a protein folds at low pH?

For Klausur

- what is an intrinsically unstructured protein ?
- why is there no clear definition?
- what experimental methods would recognise the property ?
- what are implications for the energy landscape ?
- how does a ROC curve work?
- how would one estimate sequence complexity?