Protein Struktur

- Biologen und Chemiker dürfen mit Handys spielen (leise)
- go home, go to sleep
- wake up at slide 39

Proteins - who cares ?

Most important molecules in life ? Ask the DNA / RNA people

- structural (keratin / hair)
- enzymes (catalysts)
- messengers (hormones)
- regulation (bind to other proteins, DNA, ..)
- industrial biosensors to washing powder
- receptors
- transporters (O₂, sugars, fats)
- anti-freeze ...

Proteins are easy

- data (protein data bank, www.rcsb.org)
 - $\approx 10^5$ files
- literature on function, interactions, structure
- software
 - viewers, molecular dynamics simulators, docking, ...
- nomenclature and rules

Proteins are not friendly

- one cannot take a sequence and predict structure/function
- data formats are full of surprises
- data contains error and mistakes

Protein Rules, Physics, Folklore

Physics / Chemistry

- protein + water = set of interacting atoms
 - can be calculated (not really)

Rules (not quantified)

- proteins unfold if you heat them (exceptions ?)
- many charged amino acids.. they are soluble
- if they are more than 300 residues, they have more than one domain,
- proteins fold to a unique structure (could you prove this ?)
 - lowest free energy structure

Protein chemistry

Chemists / biochemists

- sleep, go home
- one tiny surprise at the end of the lectures

Short version

- proteins are sets of building blocks (amino acids, residues, Reste)
- 20 types of residue
- chains of length few to 10^3 (100 or 200 typical)
- small ones (< ≈50 residues) are peptides
- they fold up to nice stable structures why?

Longer version..

The Plan

- polymers
- different kinds of sidechain
- structure due to backbone (secondary strucure)
- properties of sidechains
- representation

Sizes

1 Å	$Å = 10^{-10} \mathrm{m} \mathrm{or} 0.1 \mathrm{nm}$							
	structure	size						
	bond	СН	1 Å					
		СС	1.5 Å					
	protein radius		10 - 10² Å					
	α-helix		5 ½ Å					
	spacing							
	C^{α}_{i} to C^{α}_{i+1}		3.8 Å					

Proteins are polymers

• simple polymers A X B

many times gives

$$A - X - X - X - X - X - X - X - B$$

example

what kind of polymer would this give ?

Do you know what R is ?

Why are proteins interesting polymers?

Boring polymer gives irregular structures

Each part of polymer wants to interact with all other parts equally

- no structural preferences
- plastic bags, Haushaltsfolie
- no regular structures

Properties that make proteins different from plastics ..

Giving proteins character 1

- basis of standard regular structures in proteins (secondary structure)
- repeating polymer unit:

If this was all there was

• all proteins would be the same

protein chemistry

How can we construct specific structures ?

• different kinds of "R" groups

Putting monomers together

- protein synthesis story (biochemistry lectures)
- peptides and proteins
 - < 30 or 40 residues = peptide
 - > 30 or 40 residues = protein

Backbone peptide bonds

How many backbone angles ?

3 (φ, ψ, ω)

Peptide bond ω is planar

- partial double bond character (resonance forms)
- shorter than other C-N
- nearly always *trans*

Note: usually we do not draw H atoms

Backbone rotatable angles

Two rotatable angles ϕ,ψ

some ϕ rotations

can we rotate freely?

- no... steric hindrance
- look at bottom two unhappy O atoms

ramachandran plot

can we rotate freely?

• no... steric hindrance

Ramachandran plot will reappear very often

Backbone H bonds

- oxygen is slightly negative
- NH bond is polar

H-bonds

- can be near or far in sequence
- fairly stable at room temperature

Secondary structure

Regular structures using information so far

- rotate phi (ϕ), psi (ψ) angles so as to
 - form H-bonds where possible
 - do not force side chains to hit each other (steric clash)

Two common structures

- α -helix
- β -strand / sheet

- each CO of residue *i* H-bonded to N of *i*+4
- 3.6 residues per turn
- 2 H-bonds per residue
- side chains well separated

β-sheet

 β -strand

• stretch out backbone and make NH and CO groups point out

 β -sheet

 join these strands together with H-bonds (2 H-bonds/residue)

anti-parallel

After α -helix and β -sheet

Do helices and sheets explain everything? No

- there is flexibility in the angles (look at plot)
 - geometry is not perfectly defined
- there are local deviations and exceptions

Other common structures

- tighter helices
- some turns

Other structure

• coil, random, not named

What determines secondary structure ?

So far

• secondary structure pattern of H-bonding

Almost all residues have H-bond acceptor and donor

• almost all could form α -helix or β -sheet

Difference?

• sequence of side-chains – overall folding

Why else are sidechains important

- chemistry of proteins (interactions, catalysis)
 Fundamental dogma
- the sequence of sidechains determines the protein shape

side chain possibilities

- big / small
- charged +, charged -, polar
- hydrophobic (not water soluble), polar
- interactions between sites...

Side chain properties

properties

- big / small
- neutral / polar / charged
- special (...)

example

- phenylalanine side chain looks like benzene (benzin)
 - very insoluble
 - benzene would rather interact with benzene than water
 - what if you have phe-phe-phe... poly-phe?
 - does not happen in nature (can be made)
 - would be insoluble
 - not like a real peptide
 - phe is a constituent of real proteins has a role

Properties are not clear cut

You can be big / small, hydrophic / polar

• combinations are possible

Do not memorise this figure

Taylor, W.R. (1986) J. Theor. Biol., 215-218

Sidechain interactions

- ionic (if the sidechains have charge)
- hydrophobic (insoluble sidechains)
- H-bonds (some donors and acceptors)
- repulsive

Summary of amino acids (first dozen)

17.10.2016 [27]

summary of amino acids (part 2)

Amino Acids by property

aromatic

rather hydrophobic

Polar

charged

• Muss ich alle Strukturen für die Klausur wissen?

Hydrophobicity – how serious ?

Very serious, but simplified

- the lists above are
 - pH dependent
 - difficult to measure experimentally (some aspects)
- Is there a single definition for hydrophobicity ?

Other properties – chemistry / geometry

Proline

- only one rotatable angle !
- peptide bond sometimes *cis*
- pro ramachandran plot

φ phi

gly and cys

glycine

- no side chain
- can visit forbidden parts of phi-psi map

cysteine

• forms covalent links with other cys

Summary so far

- proteins are heteropolymers
- backbone forms α -helices and β -strands (and more)
 - not sequence specific
- side-chains determine the
 - pattern of secondary structure
 - overall protein shape
- special amino acids
 - cys (forms disulfide bridges)
 - gly (can visit "forbidden" regions of ramachandran plot)
 - pro (no H-bond donor)
- how many sequences can one have ? 20^n

Nomenclature

Some rules are unavoidable

Alanine	Ala	ŀ
Cysteine	Cys	(
Aspartic acid	Asp	Ι
Glutamic acid	Glu	E
Phenylalanine	Phe	F
Glycine	Gly	(
Histidine	His	H
Isoleucine	Ile	Ι
Lysine	Lys	ŀ
Leucine	Leu	Ι
Methionine	Met	Ν
Asparagine	Asn	ľ
Proline	Pro	F
Glutamine	Gln	(
Arginine	Arg	F
Serine	Ser	S
Threonine	Thr]
Valine	Val	Ι
Tryptophan	Trp	Ι
Tyrosine	Tyr	Υ
	-	

Always write from N to C terminal (convention)

Definitions, primary, secondary ...

More definitions

- primary structure
 - sequence of amino acids
 - ACDF (ala cys asp phe...)
- secondary structure
 - α -helix, β -sheet (+ few more)
 - structure defined by local backbone
- tertiary structure
 - how these units fold together
 - coordinates of a protein

distributions of residue types

Surprise coming

- 20 amino acid types are they all equally common?
- Are you made of $\frac{1}{20} = 5\%$ of ala, leu, cys, ...?

swissprot (2014)

17/10/2016 [40]

What would Darwin say ?

What do biochemists guess ?

Why?

10

Q

- so much ala, leu
- so little trp, cys, his, met
- Astory
- Darwinist

6

- non-Darwinist
 3 -
- What would Darwin say?
- There is a chemical / biological reason

leu ala gly val glu ser ile lys arg asp thr pro asn gln phe tyr met his cys trp

17/10/2016 [41]

Think Darwinist

Empirical fact

• trp, cys, met are rare in proteins

Consequence

• too much trp is bad for you / expensive / dangerous

Possibilities

- metabolic cost issues
 - does it cost energy / nutrients to make trp ? cys with its sulfur ?
- protein structure lots of chemical differences between amino acid types
 - if you put lots of trp / cys / met in a protein
 - does it not fold ? Does it become unstable ?
- if free trp toxic ?

Common amino acids

Leu and ala

- cheap to synthesise ?
- do you get them as by-products from other biochemistry?
- what is their advantage in protein structure ?
 - stability ? rigidity ? flexibility ?

Forget Darwin – think neutral evolution

• what do we mean by Darwinism ?

Very Darwinist

Think neutralist

- OK/not OK step (selection) less important
- What determines the sequences you see ?
 - "mutation" step
- mutation step looks very simple
 - not really
- consider the meaning and biases

Codon bias

•	look at the most rare amino acids	ser leu	UCU, UCA, UCC, UCG, AGU, AGC CUU, CUA, CUC, CUG, UUA, UUG
•	number of codons not quite everything	 his met	CAU, CAC AUG
		trp	UGG

• some bases are more common than others

 $p(his) = 0.22 \cdot 0.3 \cdot 0.22 + 0.22 \cdot 0.30 \cdot 0.22 \approx 0.03$

- does this predict the probability of all amino acids ?
- if yes, there is no selection for amino acids
 - Darwinism at the amino acid selection level

U	22 %
А	30 %
С	22 %
G	26 %

How relevant is Darwinism?

Forget Darwinism and selection of amino acids ?

No

- arg example
- lots of mutation data
 - for an enzyme
 - most mutations are a bit bad, some do not matter
- Do not be a pure Darwinist
- do not interpret everything you see in terms of fitness

Representation

Ultimately, our representation of a structure...

MOTA	1	Ν	ARG	1	31.758	13.358	-13.673	1.00	18.79	1BPI	137
MOTA	2	CA	ARG	1	31.718	13.292	-12.188	1.00	14.26	1BPI	138
MOTA	3	С	ARG	1	33.154	13.224	-11.664	1.00	18.25	1BPI	139
MOTA	4	0	ARG	1	33.996	12.441	-12.225	1.00	20.10	1BPI	140
MOTA	5	СВ	ARG	1	30.886	12.103	-11.724	1.00	16.74	1BPI	141
MOTA	6	CG	ARG	1	29.594	11.968	-12.534	1.00	15.96	1BPI	142
MOTA	7	CD	ARG	1	28.700	13.182	-12.299	1.00	15.45	1BPI	143
ATOM	8	NE	ARG	1	27.267	12.895	-12.546	1.00	12.82	1BPI	144
ATOM	9	CZ	ARG	1	26.661	13.087	-13.727	1.00	17.38	1BPI	145
MOTA	10	NH1	ARG	1	27.370	13.558	-14.735	1.00	18.38	1BPI	146
MOTA	11	NH2	ARG	1	25.367	12.797	-13.838	1.00	25.73	1BPI	147
MOTA	12	Ν	PRO	2	33.800	13.936	-10.586	1.00	17.07	1BPI	148
MOTA	13	CA	PRO	2	34.976	13.367	-9.840	1.00	14.99	1BPI	149
MOTA	14	С	PRO	2	34.960	11.922	-9.660	1.00	13.11	1BPI	150
MOTA	15	0	PRO	2	33.962	11.306	-9.391	1.00	10.57	1BPI	151
MOTA	16	CB	PRO	2	34.922	14.145	-8.523	1.00	15.81	1BPI	152
MOTA	17	CG	PRO	2	$\mathbf{X}^{4}\mathbf{V}^{5}\mathbf{Z}^{4}$	15.391	-8.737	1.00	18.91	1BPI	153
MOTA	18	CD	PRO	2	33.371	15.273	-10.096	1.00	19.41	1BPI	154
MOTA	19	Ν	ASP	3	coord	inates	-9.707	1.00	8.73	1BPI	155

Drawing the structure ?

Representations

- where are atoms *?* therapeutic binding
- which residues could be involved in interactions ?

Representations

What is the surface ? where could molecules fit ?

Representations

Highlight / emphasise regular structures

Why does structure matter?

- what residues can I change and preserve function ?
- what is the reaction mechanism of an enzyme ?
- what small molecules would bind and block the enzyme ?
- is this protein the same shape as some other of known function ?

Where do structures come from ?

- X-ray crystallography
- NMR
- + a bit of small angle X-ray scattering, electron diffraction, neutron diffraction...

resolution, precision, accuracy

Coordinates 27.370 13.558 -14.735

• what do they mean ?

Random errors

- non-systematic / noise / uncertainty
- should be scattered around correct point

X-ray crystallography has model for data

- uncertainty (probability)
- resolution (experimental)
 - < 1 Å (unusually good)
 - > 5 Å (bad, but examples..

3LJ5 Full Length Bacteriophage P22 Portal Protein 3M0C X-ray Crystal Structure of PCSK9 in Complex with the LDL receptor

X-ray crystallography

Non-systematic errors

- small problems: (O and N look the same)
- few huge problems
- newer structures are better

Proteins are not static

- overall motion
- local motion

NMR structures

Different philosophy to X-ray

- lots of little internal distances
- do not quite define structure

Generate 50 or 10^2 solutions

• look at scatter of solutions

As with X-ray

- some parts are well defined
- some not

Summarise and stop

- roles of proteins
- heteropolymers 20 types of amino acid / residue
- geometry avoiding atomic clashes, forming H bonds
 - leads to regular secondary structure
- chemistry of amino acids very different to another
- unique structure for a sequence reflects these differences
- representations of structures
- structures in PDB are experimental have errors

some questions

- (Asp)₁₀₀
 - is it soluble ? Is it acidic / basic ?
 - would it form a compact regular structure ?
- How big is sequence space ? How much has been tried by evolution ?
- if you have a protein of poly-trp, would it form a specific structure ? How would it behave in solution ?
- for length *n*, do all / many / few of the n^{20} sequences form specific structures ?
- how would a Darwinist explain the uneven distribution of amino acid usage ?
- why would you want to represent a protein by its surface ?
- why might you draw it as a series of helices and strands?
- what is the biggest chain in the protein data bank ? Examples
 - fatty acid synthase > 2×10^3 residues/chain
 - dynein heavy chain motor domain > 4×10^3 residues/chain