Comparative / Homology Modelling

Topics

- rotamer optimisation
- loop prediction
- reliability of sequence similarity

Summary

- one protein sequence (protein 1)
- some related protein with structure (protein 2)
- put sequence 1 onto structure 2

Andrew Torda, Wintersemester 2016/2017, GST

The mission

.. AADEFGHIKHFEDA.. your sequence

No structure

• will not crystallise, too big for NMR, in a hurry, no money

You want to

- replace a residue for binding to a surface
- guess which residues in your sequence are involved in chemistry

• ...

Modelling

...AADEFGHIKH-GED...

• do a blast search ... find ... AQDEF-HIKKGFED

your sequence

structure 4b49 in PDB

replace original ... AQDEF_H...

with your sequence
..AADEFGH..

Using model

with substrate

...AADEFGHIKH-GED...

who is near substrate?

Accuracy

You now have coordinates for your sequence

- how accurate ?
- does it matter ?

May not need to be accurate

- phasing (X-ray crystallography)
- guiding mutagenesis

May or may not be good enough

• docking

Most basic rule

Guiding belief

- similar sequence gives similar structure
 - evolution
 - chemistry

Most important

• closer the sequence is to template (sequence terms) – better the model

Reasonable expectations

- two enzymes (G6Pdh) easy to find homology
- could one have been modelled, knowing the other?
- knowing the structures below, this might be the limit of what could be done

Sequence and structure similarity

Two proteins with similar sequence

- how likely is similar structure ?
 - question of degree (how similar ?)

Reasons?

- Intuitive chemically obvious
- evolution

More on this next semester

Overall modelling protocol

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure

Finding a template / parent

How unique is my sequence ?

- given human haemoglobin, you would find horse, pig, and 10³ globin structures
- given a strange enzyme from an exotic virus, it may have no obvious homologues – it has evolved too much
- blast / psi-blast / fasta / HMMs

high sequence identity	low sequence identity	very low
(>~20-25 %)	(<~20-25 %)	
blast, fasta, anything	psi-blast, HMMs	psi-blast, optimism

Why so vague ?

Template reliability

Length and degree of similarity

- old rule
 - < 20 %, not similar
 - > 25 % similar
 - otherwise (twilight zone)
- not very good

Template reliability

Why is this not enough ?

- consider random mixture of amino acids
- add bias of composition (some amino acids are rare)
- compare a lot of proteins and say
 - pairs have 15 % similarity (average)
- we see a pair of 20 % similarity for 50 residues
 - is it significant?
- we see a pair of 20 % similarity for 600 residues
 - more convincing

Quantifying importance of similarity length

Reminder..

• we know the size of an alignment how often are the two proteins not structurally related ?

but there is more to deciding whether or not similarity is significant

More to reliability

15 % similarity

how significant is the similarity between two proteins?

- does not only depend on the two proteins
- psi-blast in sequence lectures

Summarise

- Sequence identity is most important
- It is not enough to say 20 25 % similarity

Sequence alignment

We have picked a template for our sequence now...

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- we need an alignment
- difference compared to database searches ? (different to Georgio & Prof Kurtz)
 - not scanning a database (10⁷ sequences)
 - we can do best possible alignment

Careful alignments

Computer time not a problem - use

- most expensive alignment algorithm, could be one of
 - Needleman and Wunsch
 - Gotoh
 - Smith and Waterman
- careful selection of substitution matrix
- careful selection of gap penalties

How important?

Alignment errors

ANDREW

ANQEW

two reasonable alignments

ANDREWorANDREWANQ-EWorAN-QEW

difference?

• from C_i^{α} to C_{i+1}^{α} almost 4 Å

Difficult alignment example

- **sequence with unknown structure** ANDREW
- sequence of structure ANDRWQANDRKWSANDRWWC
- reasonable alignments
- ANDR-WQANDRKWSANDRWWC
- ANDREW----- guess 1 [includes gap
- ----- guess 2
 - ----- guess 3
- Is one correct ? More likely to be correct ?
- guess 1 a residue has disappeared (difficult to model)
- guess 2 K->E; guess 3 W->E
- very dependent on alignment quality / scoring / substitution matrix

Sidechains – should we worry ?

When do we not care ?

- for some residues, not meaningful (ala/gly)
- some residues entirely on surface of protein
 - interact with solvent
 - barriers to rotation ? smaller than kT
 - all conformations accessible
- When is it sensible to worry?
- sidechain is big and buried
- sidechain is charged and buried (salt bridge ?)
- example trp usually
 - big
 - buried
 - hydrophobic
 - not very mobile

Sidechain placement

How to place sidechains

- if identical to parent
 - re-use parent coordinates
- in all cases C^β is known from backbone
- question
 - what angle should I have at each rotatable bond ?
- Reasonable strategies
- initial placement
 - random
 - probabilities from protein data bank?
- fix !..

Fixing sidechains

Considerations

- atoms do not lie on top of each other
- residues like to pack (few holes in proteins energy arguments)
- hydrophobic residues like each other
- charged and polar residues usually talk to solvent
- buried charges in salt bridges / no free charges in protein core

Can we write this down as a formula?

- almost
 - an energy function should contain this (next Semester)

Optimising sidechains

Basic philosophy

- write down some function for energy +
 - energy minimisation
 - molecular dynamics
 - Monte Carlo / simulated annealing
 - self-consistent mean field methods
 - clique method our example
- so as to rotate side-chains / make conformations more likely

Rotamers and cliques

Many ways to optimise side chains

- annealing, simulations, self-consistent mean field optimization Clique detection
- just one example (not best, fastest, ...)
 Ingredients
- side-chain rotamers (discretisation)
- score for energies / clashes

Definition

• clique – subgraph where each point is connected to all others

Most sidechains have rotatable angles (more than 1)

- for each angle usually 2 or 3 angles are more likely
- approximate:
 - pretend each side chain may only exist in one of the preferred positions "rotamers"
 - per sidechain
 - maybe 3, 9, .. rotamers
- crude ? yes
- useful ?
 - transform problem into a smaller search

Fitting rotamers in a protein

Simple quasi-energy function

- atoms may not clash
- imagine 0 is fixed
- 0 does not fit with 1
 - OK with 2 or 3
- 1 is not OK with 0, 2, 3
 - OK with 4, 5, ...9

What we want – lists of who is compatible with who

Draw as a graph

• lines connect who is compatible with who

- connections for 0 and 1 drawn
- do for all other nodes (rotamers)
- no edges between nodes for 1 residue

Imagine there is only one possible set of rotamers

- every node (rotamer) will be connected to every other
 - = clique
- Imagine there are two solutions
- there will be two cliques
- Application
- take protein
- build graph
- find all cliques
- write out lists of sidechain conformations

What was a very difficult problem seems to be tractable but...

Rotamers – problems with cliques

Killer problem

• finding maximal cliques is very very difficult

Rotamer concept

- side chains do not exist at only 0, 120, 240°
- Better energy functions are more complicated
 - not compatible/incompatible
 - requires thresholds
 - 1. decide on template
 - 2. align sequence (unknown structure) to known structure / template / parent
 - 3. replace sidechains of parent with new ones
 - 4. fix
 - gaps
 - insertions
 - loops
 - 5. overall structure

Broken main chain

Typical situation ANDR-WQANDRKWSANDRWWC parent ANDREW---DRKWS--DRWWC model our model...

Basic problem...

- pieces of unknown structure
- endpoints relatively fixed
- should be joined

Loop modelling

Loop problem

- do not want to disturb regular secondary structure
 - more likely to be correct
- ends of loop relatively well known
- composition (sequence) of loop The problem specifically:
- find an arrangement of backbone and sidechains which
 - is geometrically possible
 - low energy

Possibilities

- distance geometry
- database search
- brute force

Methods for loops

Distance geometry

- we know
 - end points and distances
 - sequence of loop
 - all bond lengths and angles

Results ?

- arrangement of atoms with
 - correct covalent geometry
 - no atoms on top of each other (set by minimum distances)
- little consideration of torsion angles

Loops Database searching

Database searching

- imagine we have a 9 residue loop
- take protein data bank
- collect coordinates of all 9-residue loops
- insert those with correct end to end distance
- refinement...
 - insert those with almost correct distance &
 - similar sequence to loop residues

Loops – brute force

Desperation / brute force for small number of residues

- divide angles into pieces (maybe 30°), 360/30 = 12
- test every combination (joining ends, energy)
- called "grid search"
- How many angles ?
- per residue
 - fix ω
 - phi φ, psi ψ 12×12=144
- possibilities = $144^{N_{res}}$

General repairs

What do we have now?

- sidechains placed and maybe optimised
- rough guess coordinates for all residues (including loops)
 Broken ?
- sidechains and loops often wrong
- small changes in other parts of structure
- time for last refinement .. again
 - energy minimisation / molecular dynamics / ...
 - 1. decide on template
 - 2. align sequence (unknown structure) to known structure / template / parent
 - 3. replace sidechains of parent with new ones
 - 4. fix
 - gaps
 - insertions
 - loops
 - 5. overall structure

Quality

General vs specific

- general
 - energies / geometries (almost the same)
- specific properties of this protein (vague and not for exams)
 - expected residues in active site
 - known reactive residues on surface
 - ... any experimental data

Checking by energy

Use a classical energy function (details next semester)

- if physics were perfect, would include all ideas mentioned
- details good (atom overlap, angles, ..)

Statistical approach

- take features you believe in
 - hydrophobic residue on surface, buried residue in middle..
 - phi / psi distributions
 - count occurrence in databank
- count occurrence in your model
- see if model is statistically plausible

Real world

Recipe on these slides ?

- too simple
 - steps combined / repeated
 - usually many models generated and checked multiple templates
 - multiple templates simultaneously?
 - interaction with experiment (predictions tested)
- automatic methods are very good

What does one achieve ?

Very easy cases ?

• not much change from parent

Very difficult ?

• lots of errors

Why bother ?

- good modellers are experts on their systems
- some proteins are so important (money) no waiting on
 - experiment
 - competitors
- simple predictions
 - which residues may I modify (binding to sensor...)
- consider absolute limits

An Example

2mnr and 4enl

- would be a typical modelling target
- in real world
 - alignment would not be perfect
 - loops may be quite wrong

The sequence alignment

Seq ID 25.1 % (81 / 323) in 373 total including gaps : 1 : 2 : 3 : 4 : 5	
sktyavlglgngghafaaylalkggsvlawdidagrikeiqdrgaiiaegpo svehimrdy-nggwa-mrvihangaslfflavvihifrglyvgsvkapreitwivgmviv	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
lagtahpdlltsdiglavkdadvilivvpaihhasiaaniasyisegqliilnpo llmmgtafmgyvlpwgqmsfwgatvitglfgaipgigpsiqawllggpavdnatlnri 1 : 1 : 1 : 1 : 1 : 1 : 1 4 : 5 : 6 : 7 : 8 : 9	Į
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
atggalefrkilrengapevtigetssmlftcrserpgqvtvnaikgamdfaclpaakag fslhyllpf-viaalvalhiwafhttgnnnptgvevrrtskadaekdtlpfwpyfvikd	J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 : 0 : 0 : 0 : 0 waleqigsvlpqvvavenvlhtsltnv-navm-hplptllnaarcesgtpfqyyl- fala-1vllgffavvavmpnvlghpdnvvganplstpahivpewvflpfvailrafaa	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
dvwvvilvdgltfgivdakffgviamfga-i-avmalapw-ldtskvrsgayrpki 3 : 3 : 3 : 3 : 3	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Intryffedvstglvpiselgravnvptplidavldlisslidtdfrkegrtlekigise rmwfwflvldfvvltwvg-ampt-eypydwis-liastywfay-flvilplig	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3 : 4 :	
0 : ltaagirsave	
atekpepipasie : 4 : 2	
: 0	

2mnr and 4enl example

• sequence alignment not the same as alignment from structures

Summarise für Klausur

Ideas of sequence similarity

Technical issues

- loops
- sidechain placement

None of the vague statements

• quality