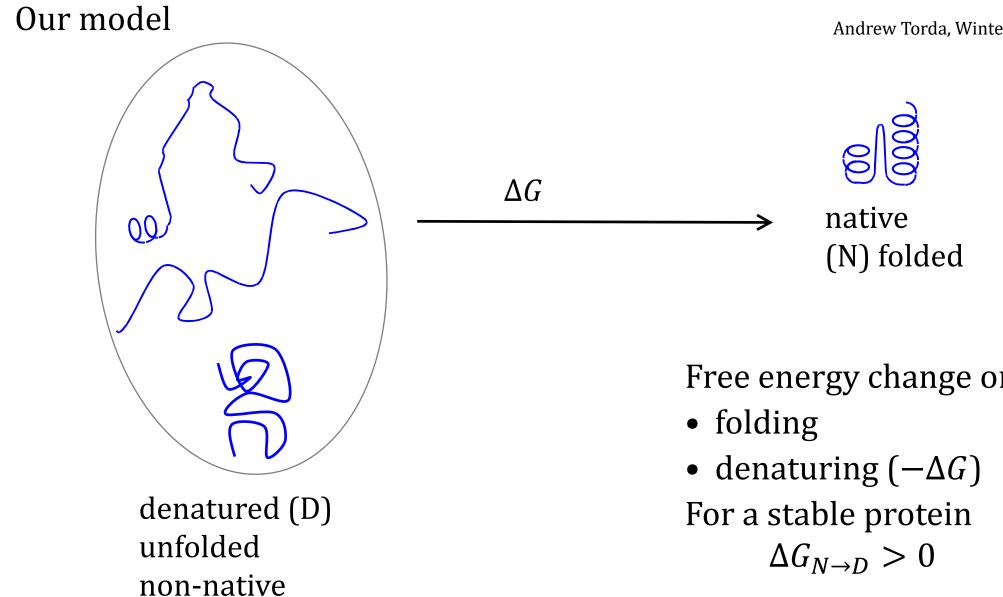
Protein stability



Andrew Torda, Wintersemester 2016 / 2017 GST

Free energy change on

Nomenclature – not for discussion

Make sure the following words are clear

- enthalpy
- free energy
- denatured / unfolded

Protein Stability

- what is known empirically
- definitions
- a stability surprise
- some explanations
- weaknesses of models

ΔG convention

 $\Delta G_{folding} = -\Delta G_{unfolding}$

Define $\Delta G > 0$ as stable so reaction is folded \rightarrow unfolded (native \rightarrow denatured) more positive ΔG , more stable the protein

Empiricism / rules

- most proteins are marginally stable ($\Delta G \approx 0$)
- proteins can be denatured by
 - pH, ions, temperature, solvent, surface area, urea (example later)
- too hot?
 - eggs cook, people die
- big variation
 - some bacteria live at 373 K their proteins are not denatured

Explain denaturing

- Why do these denature a protein ?
 - pH, concentrated ions, temperature, solvent, surface area
- pH ? change the charge on some groups, remove favourable interactions
- ions ? provide competition for charges, H-bonds

$$\begin{bmatrix} NH_2 \\ H_2N & H_2 \end{bmatrix}^+ H_2N & H_2N & H_2 \end{bmatrix}$$

- temperature ? add kinetic energy, push particles out of minima
- solvent ? remove favourable protein-solvent interactions
- surface area ? surface tension / protein air interactions

Rules

Nature cares about free energy ΔG we measure free energy, not potential energy $\Delta G = \Delta H - T\Delta S$

- *G* free energy (Gibbs)
- *H* enthalpy potential energy including volume effects *U* + *PV*
- *S* entropy

Formula will come back – remember

- two contributions
 - 1. entropy always favours unfolding
 - 2. enthalpy / potential energy will favour folding

Measurement

Folded / Unfolded

- how to measure
 - spectroscopy
 - absorbance (optical / UV spectroscopy)
 - rotational (CD / ORD)
 - fluorescence
 - NMR
 - activity
 - ...
- usually two states (native / denatured) that somehow look different

Energies

- calorimetry
- measurements of [native] / [denatured]

Experimental - measure ΔG ?

How do I measure ΔG for a reaction A + B \rightarrow C?

- calorimetry ? measure the heat released
 - for a protein, reaction is folded \rightarrow unfolded
 - Could one prepare protein and watch it fold ? Difficult

Alternative view – for any reaction $A \rightarrow B$ at equilibrium • $\Delta G = RT \ln \frac{[B]}{[A]}$ or in our case $\Delta G = RT \ln \frac{[unfolded]}{[folded]}$

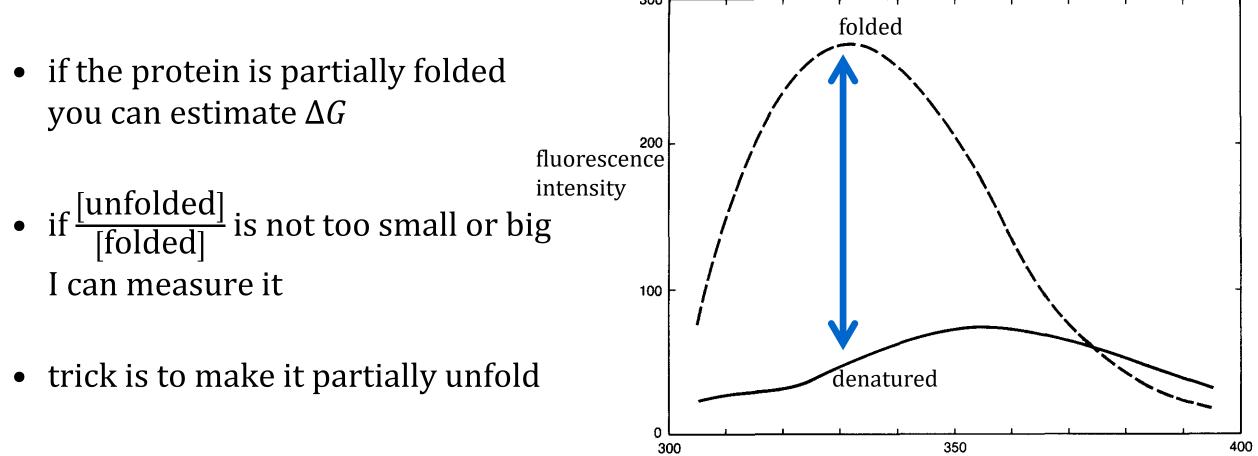
Problem

• under normal conditions [unfolded] is too small

• if
$$\frac{[unfolded]}{[folded]} = 10^{-4}$$
 or 10^{-5} could you see it?

Assume

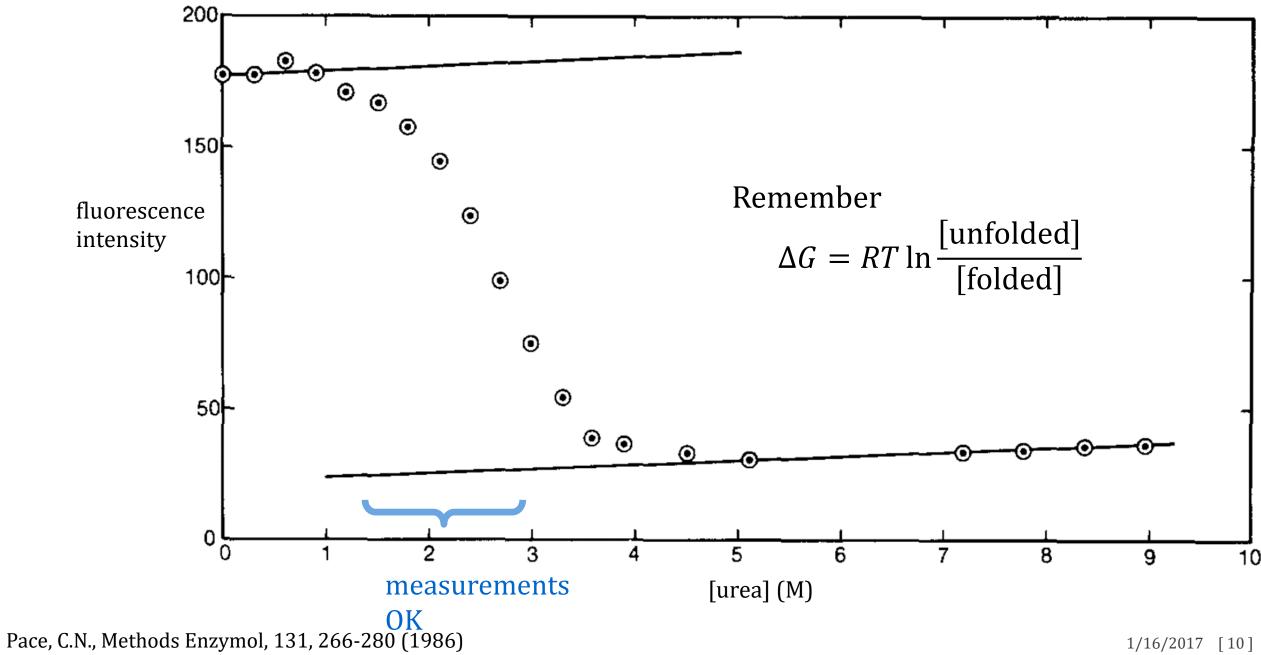
- you have some kind of spectroscopy (CD, fluorescence, ...)
- you can detect a signal for folded and unfolded



Pace, C.N., Methods Enzymol, 131, 266-280 (1986)

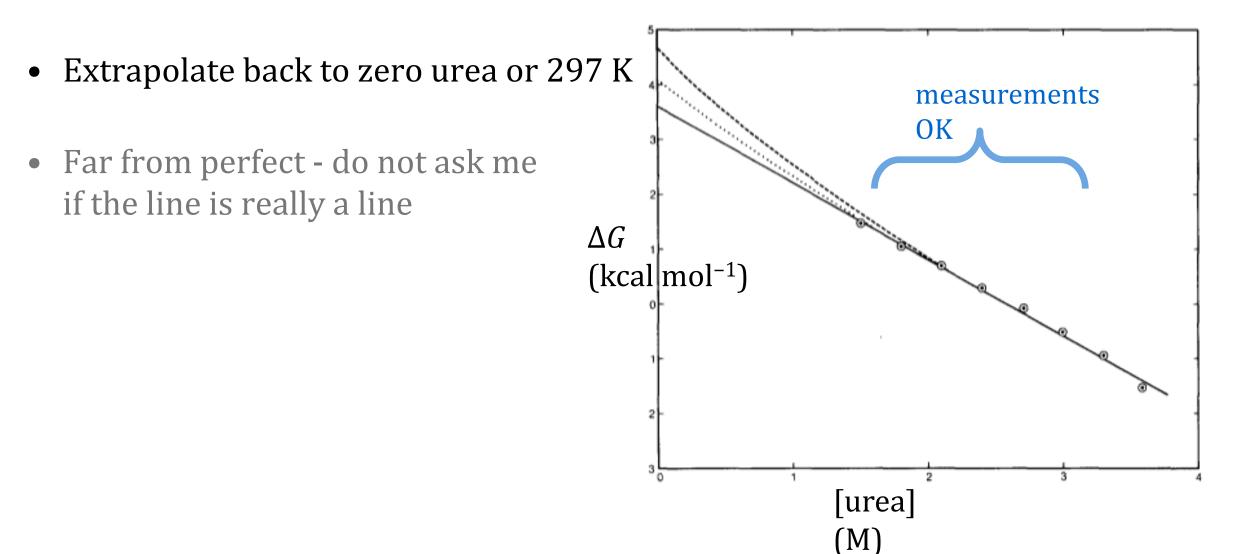
nm

Add denaturant



Experimental - measure ΔG ?

• From spectroscopy, estimate ΔG for each temperature / [urea]



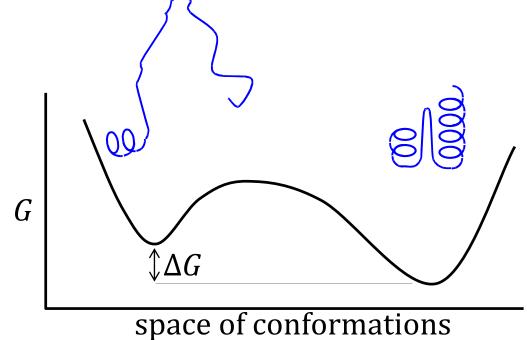
Pace, C.N., Methods Enzymol, 131, 266-280 (1986)

Two state model

Model requires an energy barrier

What if $\Delta G = 0$?

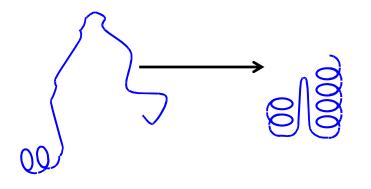
- ¹/₂ molecules folded
- ¹/₂ molecules denatured



First picture of stability

What holds a protein together ?

- forces between atoms
 - bonds, electrostatic, Lennard-Jones
- atoms also repel



Cannot be so simple

- atoms would just fall into correct position
- ΔG would always be very positive
- missing?
 - effect of solvent
- in native structure there are "correct contacts"

Balance of energy terms

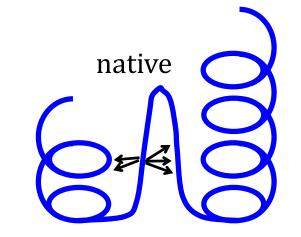
Refer to contacts in native structure as correct

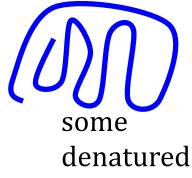
One atom in native structure

• interacts with correct neighbours

In the non-native structures there are also contacts

- atom interacts with "wrong" neighbours
- balance of forces
- stability has to do with
 - energy / enthalpy $H_{\text{native}} H_{\text{denatured}}$





/ nonnative

Balance of energy terms

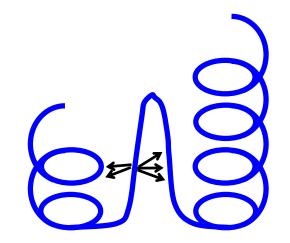
More forces

- how many polar / charged groups are there ?
 - NH + CO backbone every residue
 - polar / charged sidechains
- all can interact with water
- stability will also depend on

$$H_{native_water} - H_{unfolded_water}$$
 (Klausur Frage)

Balance of energies

- contacts in native structure
- contacts in unfolded structure
- contacts of native protein with water
- contacts of unfolded protein with water



Entropy version 1

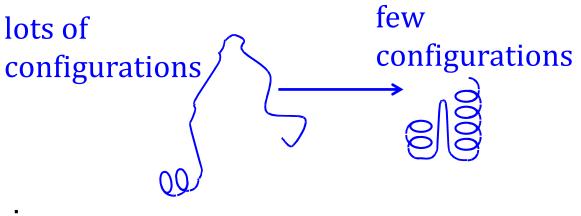
 $\Delta G = \Delta H - T \Delta S$

- considered ΔH terms, what is $\Delta S_{folded unfolded}$?
 - entropy depends on the number of conformations ($k \ln \Omega$) or better

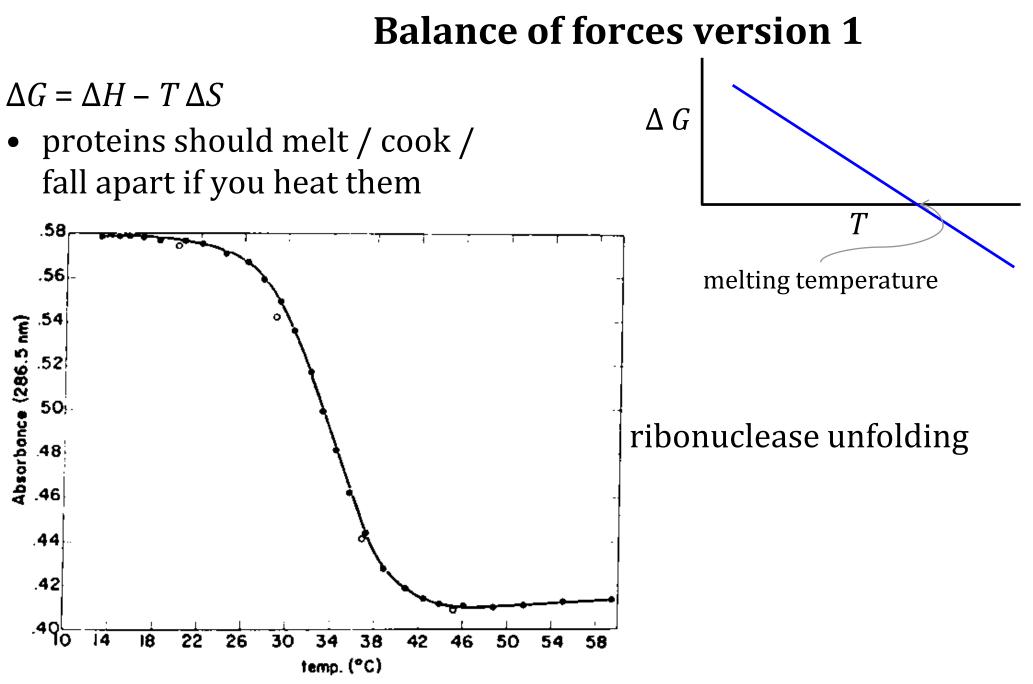
 $S = -k \sum_{i=1}^{N_{states}} p_i \ln p_i$

As a protein unfolds

- number of conformations ↑
- entropy goes ↑
- entropy / ΔS will favour denaturing



 Ω_x number of states in xk Boltzman constant



Tsong, T.Y, Baldwin, R.L, Elson, E.L., Proc Natl Acad Sci, 68, 2712-2715, 1971

Entropy version 2

 $\Delta G = \Delta H - T \Delta S$

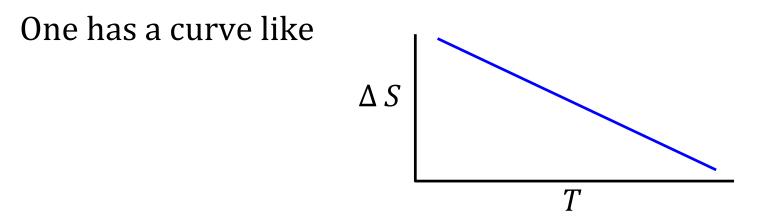
- is ΔS a constant? Is it *T* dependent?
- meaning of $\Delta S_{folded-unfolded}$
- roughly how does the number of states change ?

$$\Delta S = S_{folded} - S_{unfolded}$$
$$= k \left(\ln \Omega_{folded} - \ln \Omega_{unfolded} \right)$$

$$= k \ln \frac{\Omega_{folded}}{\Omega_{unfolded}}$$

• Ω_{folded} definitely goes up with temperature

Entropy change on unfolding



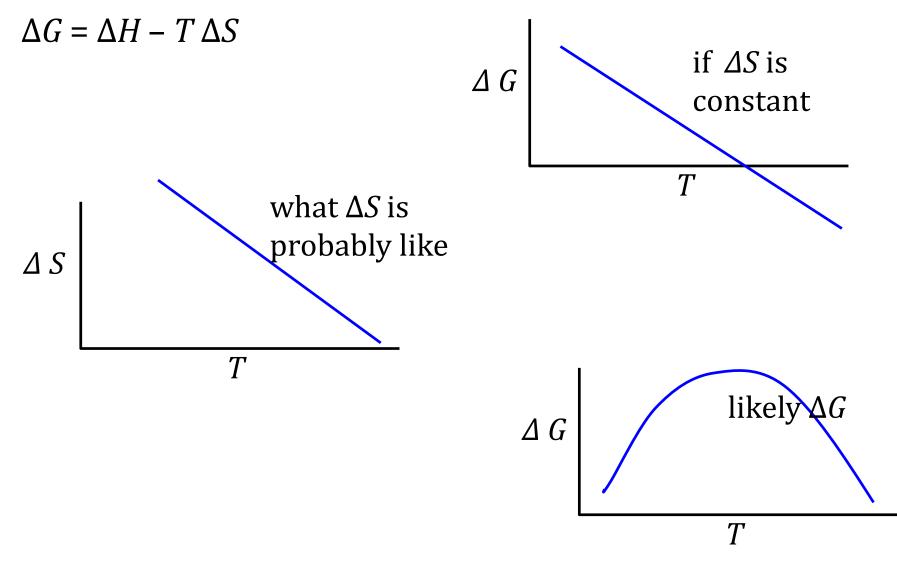
Radical consequence

• entropy might make proteins less stable as you cool them

Can one cook an egg by cooling it?

Combining these properties

protein stability



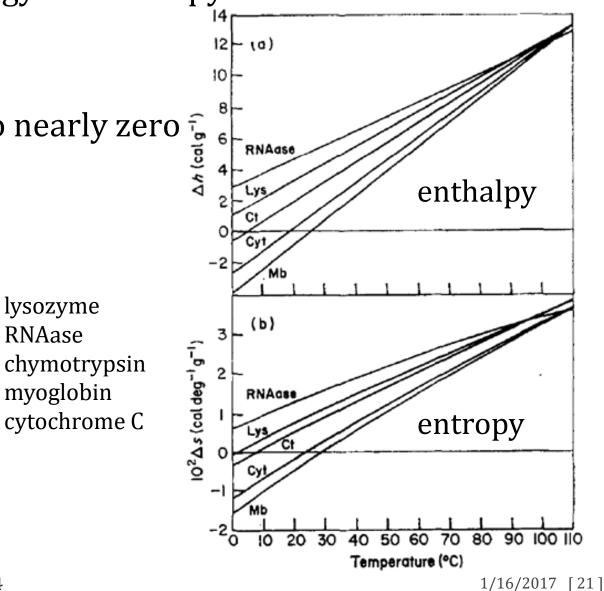
What is seen / claimed ?

Old measurements

- protein stability (ΔG) is a balance of energy and entropy
- note sign convention

 $\Delta G = \Delta H - T \Delta S$

- difference of two large numbers comes to nearly zero
 what might you expect ?



Privalov, P.L., Khechinashvili, N.N, J. Mol. Biol. 86, 665-684, 1974

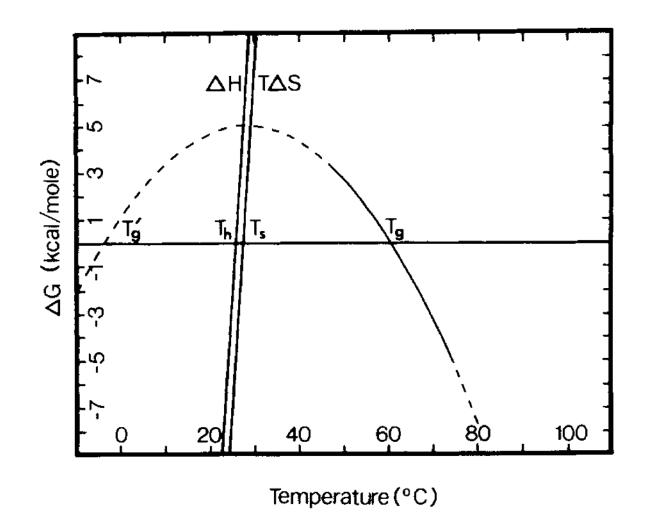
final version

Claim.. for typical protein

- bold line –measured
- dashed extrapolated

Implies

- you can denature a protein by cooling (cook egg by freezing ?)
- what is measured ?



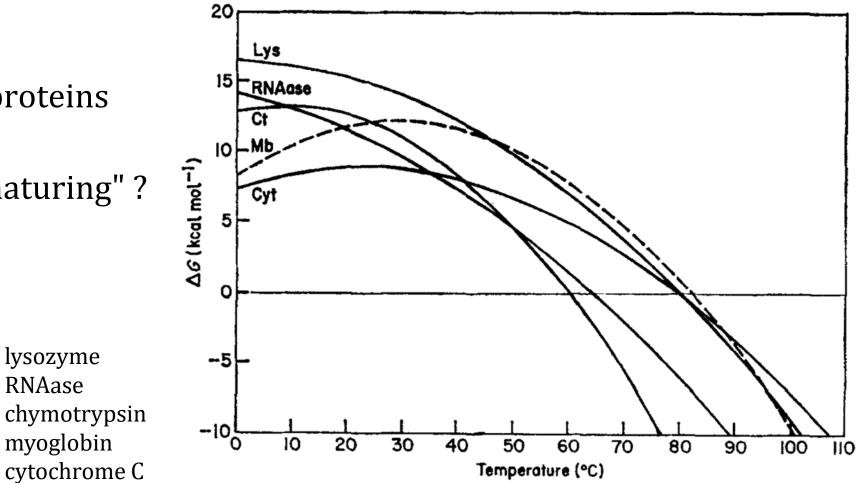
free energy experimental

Looks like there will be cold denaturing

• below zero

Curve is different for all proteins

Does this prove "cold denaturing"?



Cold denaturing

Controversial

Often predicted to happen below 0°

• hard to measure

Entropy and Enthalpy Summary / Consequences

Enthalpy *H* / potential energy

• will always favour folding

Entropy

• will always favour unfolding

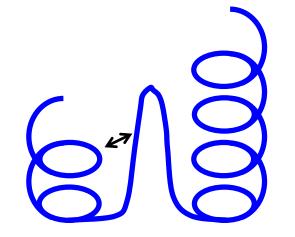
Debatable

- how much does entropy change with temperature ?
- Two state model ? native \rightarrow denatured
 - what does $\Delta G = 0$ mean ?
 - definitely too simple proteins partially unfold

proteins and systems

Energy

- energy of native state is important but
- energy of denatured state is equally important



Consequence

- naïve optimisation may not work
- you propose to make a protein more stable by putting in residues with opposite charge
 - lowers energy of native structure
 - also lowers energy of non-native structure

proteins and systems

- you are always looking at $\Delta G = G_{native} G_{denatured}$
- nobody knows what the denatured state looks like
 Not just for temperature
- chemical denaturant?
 - maybe simply binds to unfolded protein
 - lower energy more stable
- Water is important (water entropy)
- unfolding a protein changes water order
- correct way to look at system is

 $\Delta G = G_{native_protein+water} - G_{denatured_protein+water}$

• next ... motions in proteins

cannot be

measured

Motions, frequencies and proteins

Motions and dynamics in proteins

- how big are they ?
- how fast are they ?
- Examples

Types

- without barriers
- with barriers

Energies

- equal probability
- not equal probability

Nasty question .. answered later

I have motions in a protein at T=273 (cold)

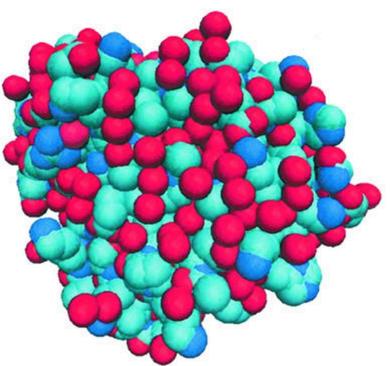
Heat protein to 300 K

• do the frequencies of motions change ?

Protein motion examples

Early evidence that motions are important

- myoglobin structure (1962)
 - carries O₂, maybe first protein structure solved
- no channel could be found for O₂ to reach haem group
- could only be explained if parts of protein move and open up
- many similar stories
- activity of protein cannot be explained by simple structure



Protein motion examples

Fundamental arguments

- bonds, angles vibrate, rotate
- basis of many kinds of spectroscopy
 - infra red, fluorescence, NMR, ...

More fundamental arguments

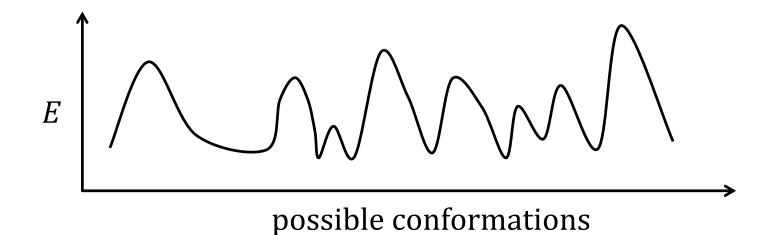
- at *T* = 0 everything dead
- at T = 300 (this room) everything has kinetic energy
 - everything is moving
 - meaning of temperature ? *T*, E_{kin} ?

$$\frac{1}{2}mv^2$$

E_{kin} kinetic energy *T* temperature

Energy surfaces

Run around on an energy surface



Energy surface and energy should determine motions

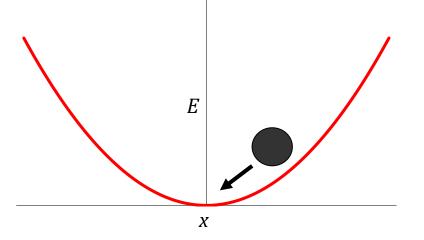
- too complicated
- energy surface not well known

Work with simpler models

Motions with or without barriers

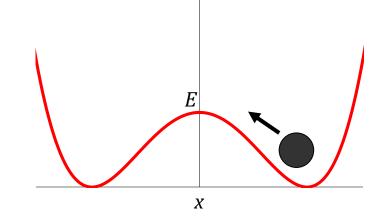
Without barriers

• one state + fluctuations



With a barrier

• two states



Harmonic oscillators

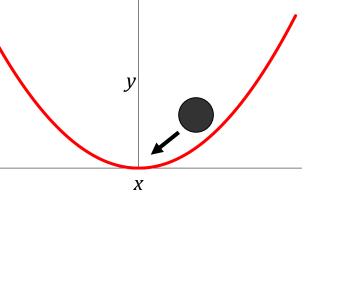
Find them everywhere..

- potential energy = kx^2
- what is the frequency of motion ω ?

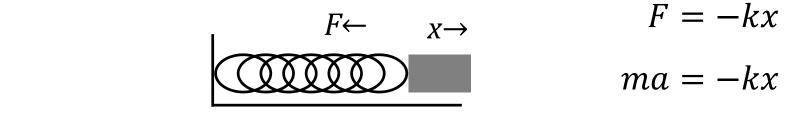
 $x(t) = A\cos(\omega t + \delta)$

A is the amplitude ω is the frequency δ is phase

Detour .. why does this make sense ?



Harmonic oscillator



$$m\frac{d^2x}{dt^2} + kx = 0$$

say
$$\omega^2 = \frac{k}{m}$$
 so $\omega = \left(\frac{k}{m}\right)^{1/2}$

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

has a solution. $x(t) = A\cos(\omega t + \delta)$

• can I convince you ?

$$m\frac{d^2x}{dt^2} = -kx$$

Is the solution valid ? $x(t) = A \cos(\omega t + \delta)$

$$\frac{dx}{dt} = A(-\sin(\omega t + \delta))\omega$$

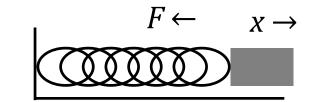
 $= -A\omega\sin(\omega t + \delta)$

$$\frac{d^2x}{dt^2} = -A\omega\cos(\omega t + \delta)\omega$$
$$= -A\omega^2\cos(\omega t + \delta)$$
$$= -\omega^2(A\cos(\omega t + \delta))$$

which can be re-written as
$$\frac{d^2x}{dt^2} = -\omega^2 x$$

Is the solution valid ? $x(t) = A \cos(\omega t + \delta)$

From first arguments
$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$



$$-\omega^2 x + \omega^2 x = 0$$

so $x(t) = A \cos(\omega t + \delta)$ is a solution

and back to
$$\frac{d^2x}{dt^2} = -\omega^2 x$$

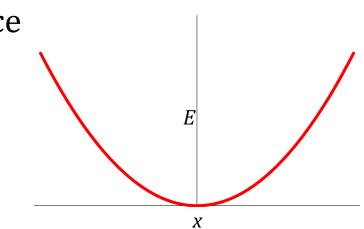
Frequency and energy models $\frac{d^2x}{dt^2} = -\omega^2 x$

What is meaning of $\frac{d^2x}{dt^2}$?

• second derivative / curvature

What happens if you change temperature?

- angular frequency ω depends on energy surface
- temperature does not appear here
- what does change ?



Changing temperature (oscillator)

Change temperature

- E_{kin} changes
- $E_{kin} = \frac{1}{2}mv^2$

$$\frac{dx}{dt} = \dot{x} = v = -A\omega\sin(\omega t + \delta)$$

- $E_{kin} = \frac{1}{2}mA^2\omega^2\sin^2(\omega t + \delta)$
- amplitude changes

Frequencies and amplitudes

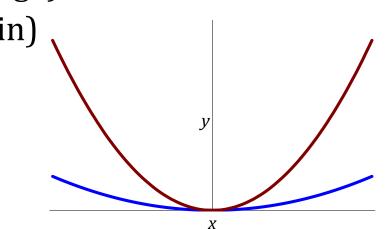
For a given temperature

- energy distributes amongst modes/ degrees of freedom
- E_{kin} the same for different modes

•
$$E_{kin} = \frac{1}{2} mv^2 = \frac{1}{2} mA^2 \omega^2 \sin^2(\omega t + \delta)$$

I have two modes in one protein

- a slow motion / low frequency (bending of a hinge)
- a fast / high frequency (movement of a sidechain) $E_{kin} = \frac{1}{2} mv^2 = \frac{1}{2} mA^2 \omega^2 \sin^2(\omega t + \delta)$
- if ω is low, *A* is high
- low frequency motions are large amplitude
- big motions are slow



Summary so far (harmonic oscillator)

- Maybe appropriate for motion without barriers
- only approximation
- frequencies do not depend on temperature
- we imagine a protein to have
 - many oscillators
 - some fast some slow
- bigger motions have lower frequency

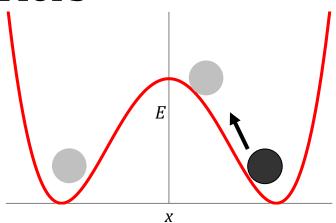
Movement with barriers

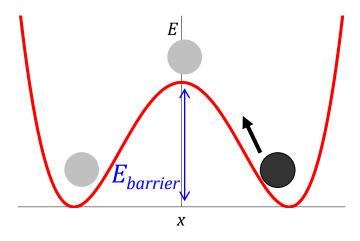
How often do you move right to left (and left to right) ? Our model

- assume some random influences water and other atoms always hitting you
- velocity from $E_{kin} = \frac{1}{2} mv^2$, $v \propto Ekin^{\frac{1}{2}}$
 - better... $E_{kin}^{\frac{1}{2}} \pm random$

If we reach the top

- we may be moving slowly
 - may move to right (no change)
 - may fall into left energy well (change)
- consequence





Movement with barriers

Rate directly reflects

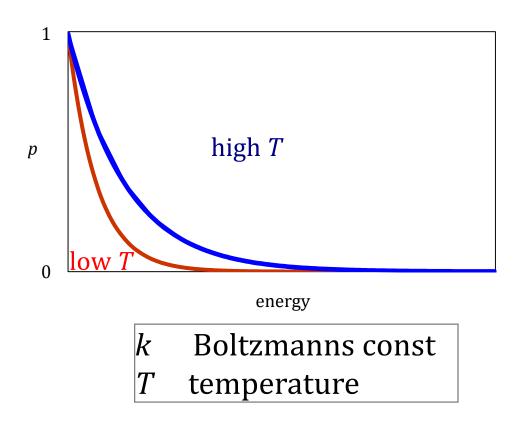
• how often does a particle have enough energy to reach top of barrier?

Boltzmann rule... (more formal next semester)

 $p_i \propto e^{\frac{-E_i}{kT}}$

Implications

- small barriers (small *E*)
 - easy / fast to cross
- as temperature ↑ rate ↑



Return to original question

Do frequencies of motions change ?

- if we have motion in a well (harmonic oscillator) .. No
- if we move between energy minima ... Yes

Which model is better ?

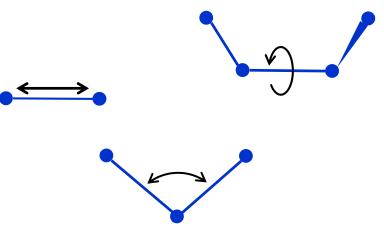
Empirical

- raise temperature and see if it changes
 Physical model
- what you believe in..

different kinds of motions (smaller)

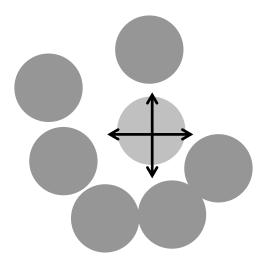
Bond stretching, angle bending

- nearly harmonic
- Torsion angles
- separate energy wells



Other motions may be locally like harmonic

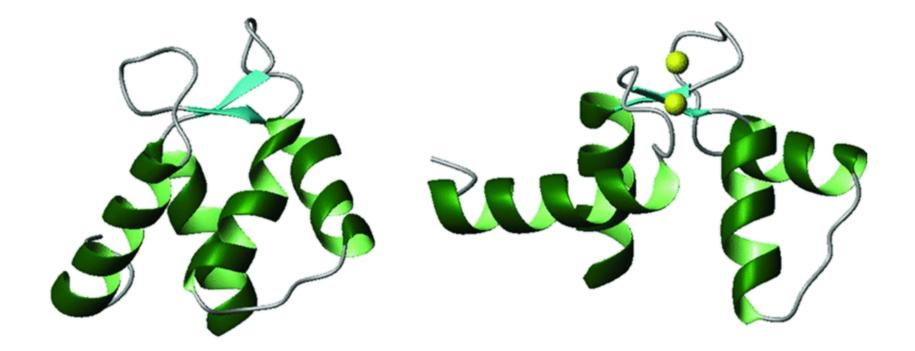
• vibrations of packed atoms



Bigger motions

Calmodulin example

- many Å and probably rather slow
- too move from one conformation to the next many barriers



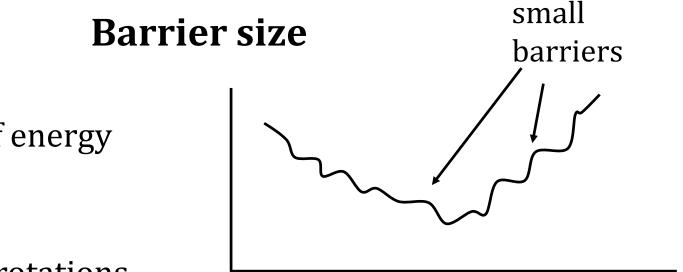
Summary

Models are too simple

- most energy terms are not kx^2
 - locally not a bad approximation
- we do not have simple energy barriers
- many more than two states
 - spectrum of motions
- many motions are a mixture (concerted)

Detection of states

- Are all the different structures present at room temperature ?
- I have two states A and B $\frac{p_a}{p_b} = \exp(\frac{E_A E_B}{kT})$
 - if $E_A EB$ much bigger than kT (some kJ mol⁻¹)
 - only one state will be seen



Barriers very small

- all particles have plenty of energy
- effectively not present
- may be the case for some rotations

Types of motions

motion	amplitude Å	log ₁₀ of time (s)
bond vibration	0.01 – 0.1	-14 to -13
sidechain rotation surface sidechains	5 – 10	-11 to -10
protein hinge bending	1 – 50	-11 to -7
sidechain rotation inside protein	5	-4 to 0
helix / strand breakage	5 – 10	-5 to 1

Summary

- Motions are necessary to explain chemistry
- NMR and X-ray structures are time averages
- usually
 - small motions fast
 - big movements slow
- temperature dependence
 - different for different kinds of movement
 - can be used to estimate energy barriers