NMR vs X-ray, precision, certainty

Main methods
- X-ray crystallography and NMR

Others
- cryo-electron microscopy (cryo EM)
- small-angle X-ray scattering (SAXS)
- neutron diffraction

- Dominated by proteins, but most comments apply to nucleotides
Techniques for structures

Mostly X-ray

- NMR
- cryo EM
- neutron diffraction
- ...
cryo-EM and SAXS

Why will I not speak about cryo-EM?

• fashionable, but look at resolution

• distance between two residues \((C_i^\alpha, C_{i+1}^\alpha) = 3.8 \text{ Å}\)

• cryo-EM cannot tell which residue is which

• getting better every year

• not yet ready for atomic detail

SAXS – even less detail
Genauigkeit

Why do I care about accuracy?
• What is a bond length? (1.07, 1.54, 1.32 .. Å) easy
• How does the energy change as I move an atom?
• I want to understand protein-ligand binding
 • where is my ligand?
 • with which residues does it interact?
 • can I predict the effect of a mutation / substitution?

A line from the protein data bank
ATOM 41 N ASP A 3 35.790 11.466 -9.466 1.00 16.15

x = 35.790, y = 11.466 z = … total fantasy (10^{-13}m)
Structure solving techniques

X-ray 88 %
NMR 8 %
cryo-EM 1 %

Can you combine methods?
• X-ray + NMR - rare
• X-ray + cryo-EM – more common
• low and high-resolution X-ray – sometimes

Why focus on X-ray and NMR?
• emphasis in this course on atomistic detail
• still most important

nobel prize this year
Error definitions

- Accuracy, precision – not good words
- Certainty / uncertainty / confidence – more in statistics
- Resolution – nice word – defined later

What do I mean by error? \(x \pm y \)
- should say 90% confidence, one \(\sigma \), 75 % quartiles, ..

How do I interpret this?
- I imagine a Gaussian (normal) distribution
accuracy / precision

basically bad words

- do not use Wikipedia + Übersetzung schwierig

small error

systematic error

large random error

repetitions do not help

if you know it, you would correct for it

repetitions increase certainty

usually modelled with a gaussian
Systematic Errors – are they relevant?

Hopefully not too much

• X-ray – very small effects – perhaps present in old structures
 • not all programs use exactly the same references for bond lengths / angles

• NMR – distances
 • if you only use upper bounds are you changing the distributions?
 • error in calibrating NOE → distance conversion
 • all distances will be too large / small

• NMR – calculation of structures
 • some methods produce more compact structures

Should not be much of a problem in modern data
Why is the Gaussian distribution sacred?

Random numbers (noise, errors)
- take random numbers from 0 to 1
- add a few dozen together and get the sum
- repeat many times
- the sums are normal (Gaussian) distributed around $\frac{1}{2}$

If I have a process which is genuinely random
- best modelled with a Gaussian

Are errors always Gaussian? No – more later
- Errors from your growth estimations/spectrometer?
 - No, but probably a good starting point

Atomic coordinates?
- this lecture
X-ray - fitting structure to data

1. Measured data
2. Resolution
3. Electron density
4. Coordinate error and other error
Resolution

Do we know the error in X-ray coordinates?
- no

Do we know the resolution?
- yes
 - property of crystal and reflections one measures

What does resolution r_{res} mean?

For two points, i, j

If $r_{ij} < r_{res}$

I cannot resolve two points – they look like one object
are they getting better?

1.2 × 10^5 structures

75% of data
1 ¾ - 2 ½ Å
all X-ray structures

structures since 2016
X-ray resolution

Cannot say if they get better
• old structures only get updated if resolution improves
• new (big) complexes are solved that could not be before (low resolution)

If I have 1.5 Å resolution are my coordinates only known to 1.5 Å? No
• I have many reflections – many estimates of position
• I add much chemical information (bond lengths, angles)

What is the error really (simulated data)?
X-ray coordinate error

For resolution near 1.5 to 2.0 Å

- I have errors around 0.2 to 0.3 Å

two different estimates of coordinate error – not important for us
Mobility

- We have uncertainty – from resolution, incomplete data
- we also have mobility

- no matter how good the data is
 the positions of atoms are not fixed
B-Factors

2ei5 all atoms

2ei5 backbone
B-factors

red – blue / mobile less mobile
- surface more mobile / core fixed

Formal meaning

\[B = 8 \pi^2 u^2 \]

say \(u \) is the average displacement

- if \(B = 50 \, \text{Å}^2 \), typical displacement \(\approx 0.8 \, \text{Å} \)
- if \(B = 20 \, \text{Å}^2 \), typical displacement \(\approx 0.5 \, \text{Å} \)

units? \(\text{Å}^2 \)

- there are different kinds of \(B \)-factors
Types of B-factors

How reliable / meaningful?

- the less certain the coordinates, the larger the B-factor (part of fitting – automatic – not done by hand)
- different programs give different values

$8\pi^2 u^2$ OK?

- in one dimension?

Ask me where Gaussian form comes from - not for Klausur – harmonic model
Anisotropic B-factors

How does an atom in a protein move?

- the middle of a protein is not very symmetric
- we could better describe mobility with more numbers

Big problem
- more numbers needs better, high-resolution data rather rare
B-factors one will meet

<table>
<thead>
<tr>
<th></th>
<th>data necessary</th>
<th>number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>every atom</td>
<td>lots</td>
<td>lots</td>
</tr>
<tr>
<td>anisotropic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>every atom</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>per-residue</td>
<td>poor data</td>
<td>few</td>
</tr>
<tr>
<td>averaged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
very mobile atoms

- B-factors: physical meaning for mobility of individual atoms
- What else does one see?
- Missing atoms?
- There is not enough electron density seen to place an atom
- Interpretation: the atoms are very mobile
- Usually only in loops, N- and C-termini
X-ray summary

- resolution is well-defined
- coordinate error is less well-defined
- resolution might be 1 ½ Å, but coordinate error is much smaller
- mobility puts a lower limit on uncertainty

How does this compare with NMR?
NMR

How are NMR structures calculated?

- measure NOEs between H's – convert to distances
 - maybe some angles, chemical shifts, residual dipolar couplings
- distances \rightarrow coordinates
distance geometry

Distance information is

- not so accurate – often only upper bounds
- limited to short (< 5 Å) distances
- there are many sets of coordinates that fit the data

Solve the distance geometry problem 100 times

- send the best 20 or 30 structures to data bank
NMR coordinate error

- purple – what you see when you open the file
- green – 20 more “models”
more drastic example

- blue first model
- gold/brown : all models
- most of the coordinates not really determined
- angle of first helix not really known
Meaning of models

Interpretation

• Each of the models in the data file agrees with the experimental information
• All of the models are reasonable solutions

Can we take the average?

• what would the average look like?

What do average coordinates generally look like?
You cannot average coordinates with normal bond lengths / angles.

Averaged (A, B) coordinates silly bonds, angles.
Using NMR coordinates

- average may have little meaning
- pick a model of your choice?
 - if the models are good – OK
 - if the modes are very different you have a problem

Can one talk about accuracy/certainty?
- If you think the models cover the allowed space
- what is the average distance compared to average coordinates? (root mean square)
- What does one expect?
• take coordinates
• generate possible distances
• delete randomly
• calculate structures / compare to known coordinates

Certainty with NMR

- take set of solutions (20 to 50)
- fit to each other or average
- for each site (maybe Cα) calculate root means square difference
- gives estimate at each site of spread
- maybe average over all sites – gives very rough idea of certainty
- Gaussian distribution assumption? Weak
- compare some features of NMR and X-ray..
Is NMR terrible?

Uncertainty is
• bigger than with X-ray
• less well estimated

There are problems with crystallography
• many proteins never crystallise
• some are difficult to phase
• a synchrotron is much more expensive than an NMR spectrometer
Distribution of errors

• I say I have 2 Å resolution or 2 Å difference between structures or 0.2 Å uncertainty – what does it mean?
• simple / classic error analysis
• if \(y = x_1 - x_2 \) with errors \(y = (x_1 \pm \epsilon_1) - (x_2 \pm \epsilon_2) \)
 • final error is \(\epsilon = ((\epsilon_1)^2 + (\epsilon_2)^2)^{\frac{1}{2}} \)
• imagine \(1/4 \) Å error on C and N
• final error on \(d_{CN} \)

\[
\epsilon d_{CN} = \left(\left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right)^{\frac{1}{2}} = \left(\frac{1}{8} \right)^{\frac{1}{2}} \approx 0.35\text{Å}
\]

silly. I know that CN bond length is 1.32 Å
What have I done wrong?
• Intuitive – some distances are known and fixed

• Formal statistical – rule only applies to independent errors
 • bonded C and N coordinates are highly correlated

• Does simple error analysis ever apply?

Here yes but probably not so interesting

Here yes and probably important
uncertainty is more complicated

Mobility is not evenly distributed

- X-ray B-factors
 - very uneven
 - surface is most mobile
 - long sidechains are very mobile

- NMR
 - uncertainty also reflects mobility
Mistakes – not random, not systematic

X-ray
- usually in fitting atoms into density
- trace chain backwards
- asn and gln – N and O have the same electron density

NMR
- misassignment of peaks
- finding errors?
finding errors

• a structure is solved again and looks different
• a structure is solved under slightly different conditions
• a very homologous structure is solved

• properties of structures
• are all bond lengths / angles OK?
sizes of structures

NMR
lots of peptides
not many > 200

X-ray
<table>
<thead>
<tr>
<th>Method</th>
<th>X-ray</th>
<th>NMR</th>
<th>cryo-EM</th>
<th>SAXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>$1\frac{1}{2}$ - $2\frac{1}{2}$ Å</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Certainty</td>
<td>< 1 Å</td>
<td>from < Å to > few Å to bad</td>
<td>blobs</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>\approx</td>
<td>$$$</td>
<td>$$$</td>
<td>like for X-ray</td>
</tr>
</tbody>
</table>

You have protein.. how difficult is structure? Easier if similar to known structure, less reliance on known structure.