Comparative / Homology Modelling

You have a sequence

.. AADEFGHIKHFEDA.. but no structure

no crystals, cannot phase, too big for NMR, in a hurry

You have your sequence and want to

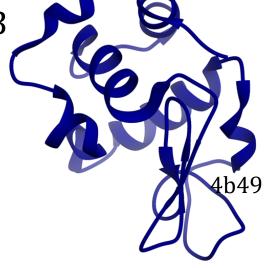
- find residues that are far from active site and in a loop
- guess which residues in your sequence are involved in chemistry
- ... say what certain residues do
 - are they in active site? Surface? Buried?

To do?

Modelling

...AADEFGHIKH-GED...

your sequence

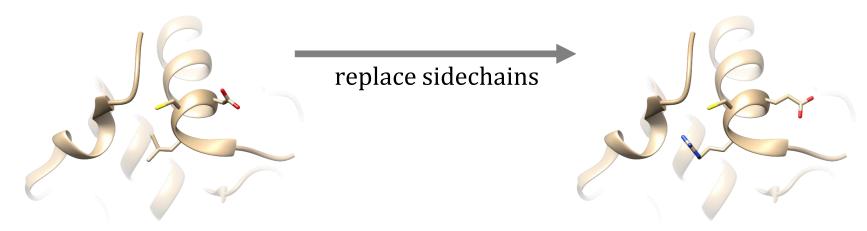

do a blast search

• find a related sequence in PDB - has a structure

...AQDEF-HIKKGFED

found in PDB

- put your sequence on to this structure
 - literally ...

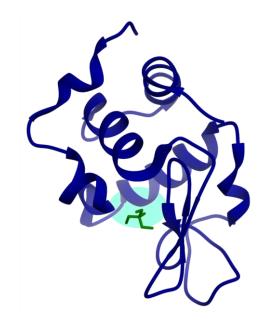


Modelling

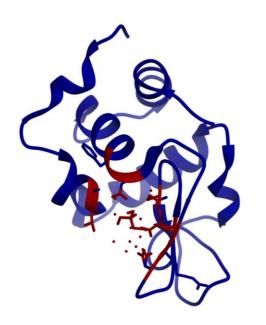
. . L C D . . original residues

just replace with residues from your sequence

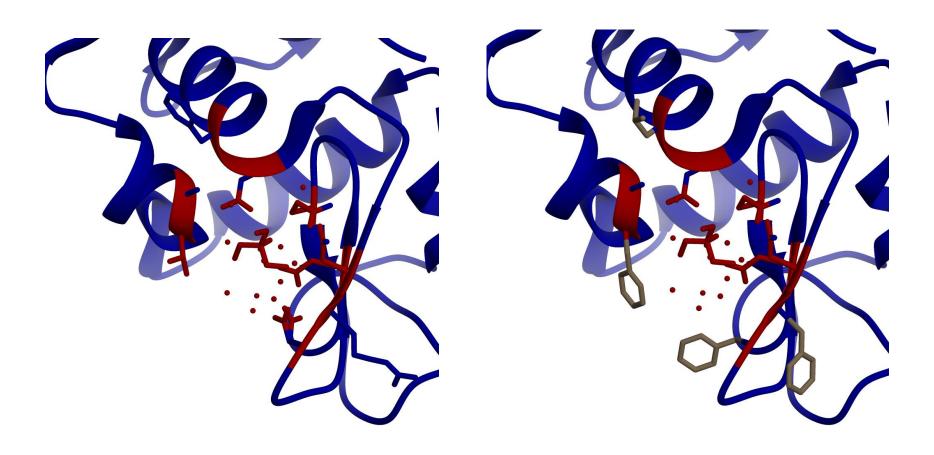
. . F C E . .



original from PDB


backbone with your sidechains

Using model


with substrate

...**AADEFGHIKH-GED**... who is near substrate?

predictions as to active site

Accuracy

You now have coordinates for your sequence

- how accurate?
- does it matter?

May not need to be accurate

- phasing (X-ray crystallography)
- guiding mutagenesis

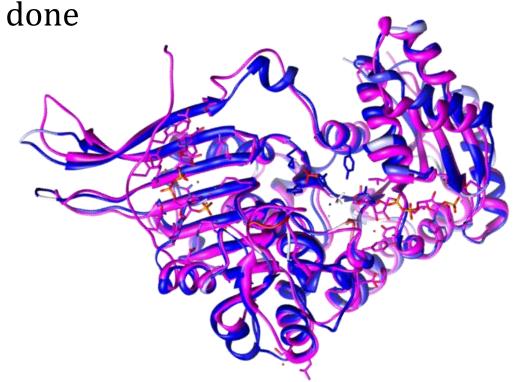
May or may not be good enough

docking

Most basic rule

Guiding belief

- similar sequence gives similar structure
 - evolution
 - chemistry


Most important

• closer the sequence is to template – better the model

Reasonable expectations

- two enzymes (G6Pdh) easy to find homology
- could one have been modelled, knowing the other?

 knowing the structures below, this might be the limit of what could be done

Overall modelling protocol

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure

Finding a template / parent

How unique is my sequence?

- human haemoglobin,
 - you would find horse, pig, and 10³ globin structures
- enzyme from a virus
 - it may have no obvious homologues has evolved too far

high sequence identity	low sequence identity	very low
(>~20-25 %)	(<~20-25 %)	
blast, fasta, anything	psi-blast, HMMs	psi-blast,
		optimism

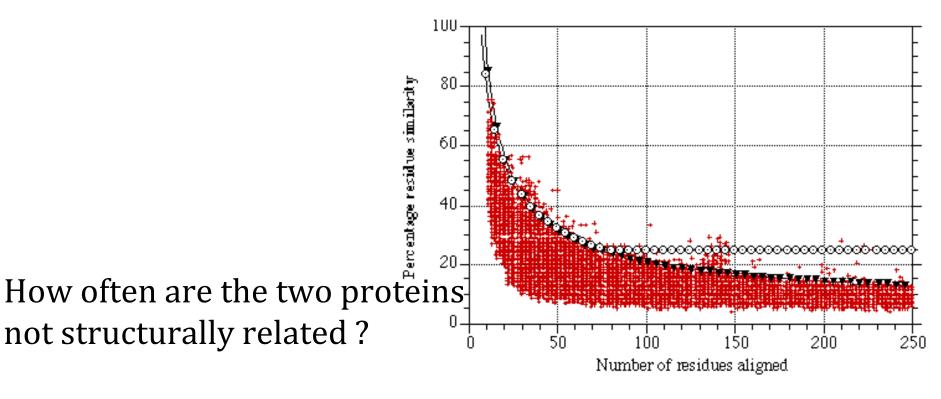
Why so vague?

Template reliability

Old rule

- < 20 % not similar
- > 25 % similar
- otherwise (twilight zone)

Not a good rule

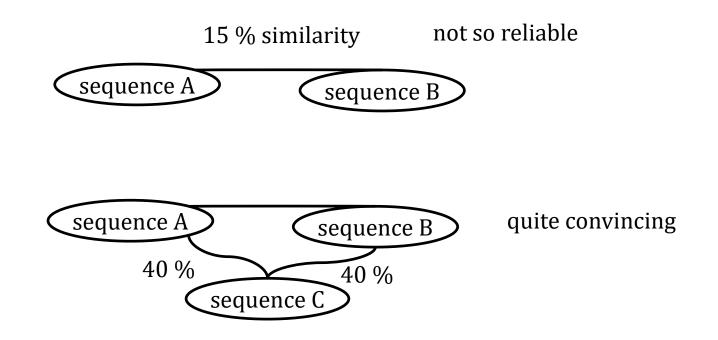

Template reliability

- Why is this not enough?
- Consider random mixture of amino acids
- add bias of composition (some amino acids are rare)
- compare a lot of proteins and say
 - pairs have 15 % similarity (average)
- we see a pair of 20 % similarity for 50 residues
 - is it significant?
- we see a pair of 20 % similarity for 600 residues
 - more convincing

Quantifying importance of similarity length

Reminder..

We know the size of an alignment


but more to deciding if similarity is significant

Rost, B. Prot. Eng. 12, 85-94 (1999)

Transitive relations

How significant is the similarity between two proteins?

does not only depend on the two proteins

sequence C – called transitive relation

Summarise

- Sequence identity (sequence to template) is most important
- It is not enough to say 20 25 % similarity
 - depends on length of alignment
 - depends on common relations (transitive)

Sequence alignment

We have picked a template for our sequence now...

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- we need an alignment
- difference compared to database searches?
 - not scanning a database (10⁷ sequences)
 - we can do best possible alignment time is not important

Careful alignments

Computer time not a problem - use

- most expensive alignment algorithm, could be one of
 - Needleman-Wunsch/Smith-Waterman family
 - multiple sequence alignment with related sequences for template and query sequence

How important?

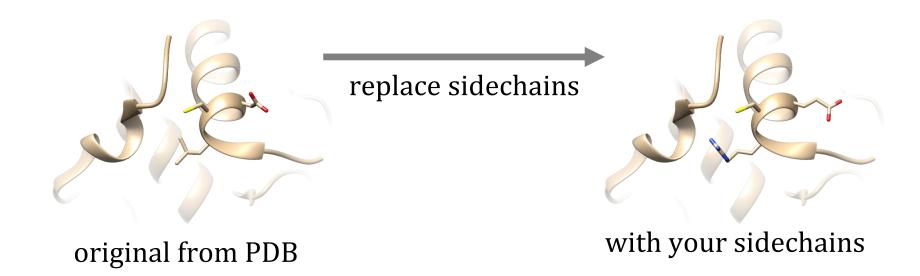
Alignment errors

ANDREW

ANQEW

two reasonable alignments

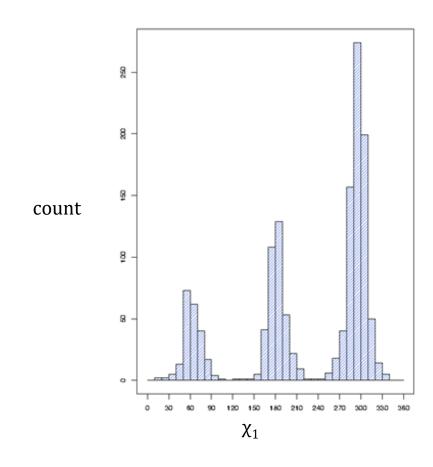
ANDREW or ANDREW


ANQ-EW or AN-QEW

difference?

• from C_i^{α} to C_{i+1}^{α} almost 4 Å

Sidechains - where to put them?

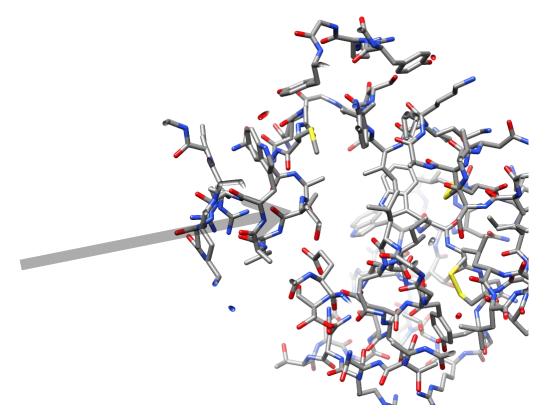

- new sidechains? need coordinates
- should you worry?
 - No surface residues maybe not they rotate
 - Yes residues with contacts / interactions

Rotamers for sidechains

Approximation / simplification

• sidechain coordinates are taken from likely rotamers

Example - replace ala with trp

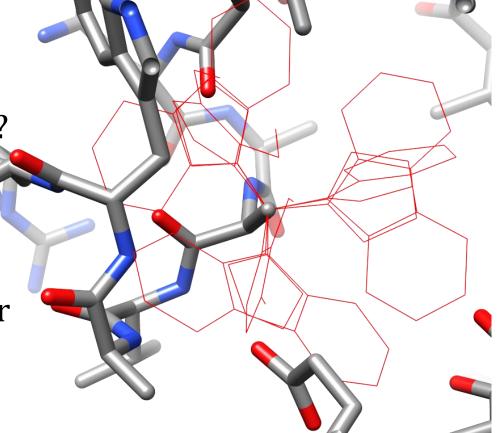

Rotamers

concede that you are happy with discretization

Trp rotamers

- 3 rotamers at χ_1
- 2 rotamers at χ_2

What do they look like?



9 possibilities

- many are silly
- have to be checked
- how difficult?
- are the neighbours known?

• if we have 9 possibilities for a neighbour

• already 9 × 9

Sidechain placement

Strategy

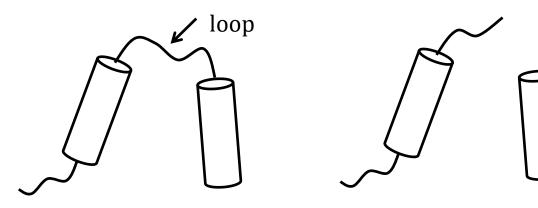
- if sidechain in your sequence is the same as template
 - use template coordinates
- new sidechains
 - say m_i possibilities at each site i
 - make lists of possibilities at each site
 - try to find biggest network of rotamers which compatible with each other
 - use simple scoring scheme (clashes)
 - how bad is the calculation?

rotamer search

- at each site i we have m_i possibilities
- could say $\Pi_i m_i$ possibilities $(m_1 \cdot m_2 \cdot)$ or just m^n
- most sidechains have only a half a dozen neighbours
- usually minutes of cpu time (not days)

Are you finished?

- maybe
- can do a energy calculation to make coordinates nicer


Broken main chain

Typical situation

ANDR-WQANDRKWSANDRWWC parent

ANDREW---DRKWS--DRWWC model

our model...

Basic problem...

- pieces of unknown structure
- endpoints relatively fixed
- should be joined

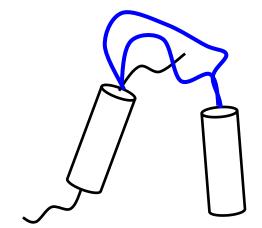
Loop modelling

Loop problem

- do not want to disturb regular secondary structure
 - more likely to be correct
- ends of loop relatively well known
- composition (sequence) of loop

The problem specifically:

- find an arrangement of backbone and sidechains which
 - is geometrically possible
 - low energy


Possibilities

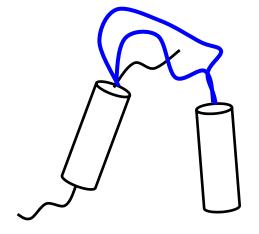
- distance geometry
- database search
- brute force

Methods for loops

Distance geometry

- we know
 - end points and distances
 - sequence of loop
 - all bond lengths and angles

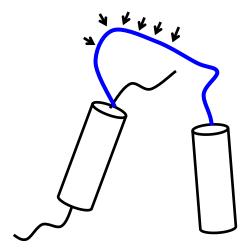
use distance geometry to generate plausible arrangements


Results?

- arrangement of atoms with
 - correct covalent geometry
 - no atoms on top of each other (set by minimum distances)
- little consideration of torsion angles

Loops Database searching

Database searching


- imagine we have a 9 residue loop
- take protein data bank
- collect coordinates of all 9-residue loops
- insert those with correct end to end distance
- refinement...
 - insert those with almost correct distance &
 - similar sequence to loop residues

Loops - brute force

Desperation / brute force for small number of residues

- divide angles into pieces (maybe 30°), 360/30 = 12
- test every combination (joining ends, energy)
- called "grid search"
- How many angles?
- per residue
 - fix ω
 - phi φ , psi ψ 12×12=144
- possibilities = $144^{N_{res}}$

Quality

- energies
- geometries
- statistics of backbones / sidechains

Remember energy/geometry/statistics are related

Real world

Recipe on these slides rather simple

- usually many models generated and checked
- multiple templates
- multiple templates simultaneously?
- interaction with experiment (predictions tested)
- automatic methods are very good

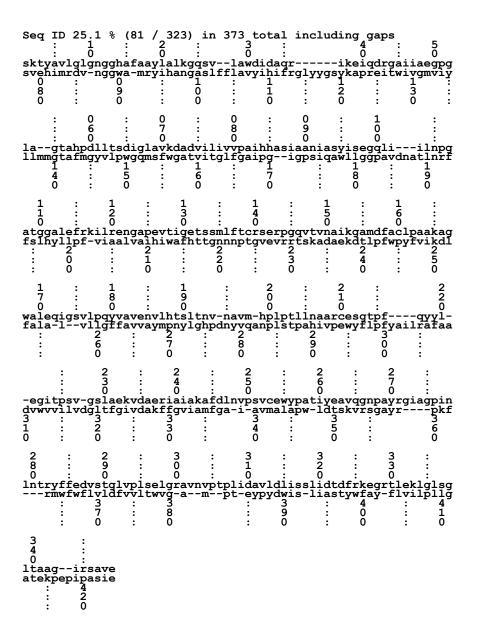
What does one achieve?

Folklore – history - testing

Very easy cases?

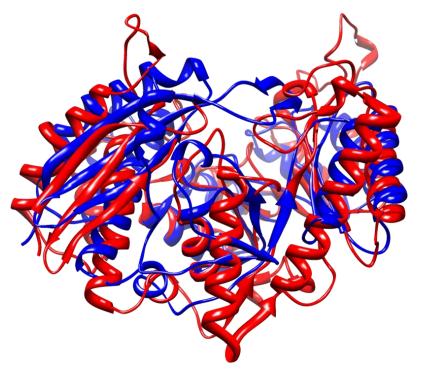
not much change from parent

Very difficult?


lots of errors

An Example

2mnr and 4enl


- would be a typical modelling target
- in real world
 - alignment would not be perfect
 - loops may be quite wrong

The sequence alignment

2mnr and 4enl example

 sequence alignment not the same as alignment from structures

Summarise für Klausur

Ideas of sequence similarity

Technical issues

- loops
- sidechain placement

Why not to build a model

Why do people like models?

Here is a picture of my protein

• Is it necessary? Not always

aacsdefgh...
aactde-gh...
aqcsdewg...
gactdeggh...

known structure some related sequences your sequence more related sequences

•••

your question

- is your sequence the same kind of enzyme?
- has the active site changed?

if ser 4 is part of active site in known structure

- you can say thr 4 in your sequence is the corresponding residue
- coordinates are not necessary information is in sequence