Protein Design

- Why?
- Experiments
- Computational Problems
- Monte Carlo, pruning methods
- Energies, energy differences (ΔE , ΔG)
 - why energies are difficult

Protein design

Not talking about

- design to change enzyme specificity
 - anything to change ligand binding

Am talking about

- you have a useful protein probably enzyme
 - want a more stable version
 - stability?
 - pH
 - solvents
 - temperature
- assumption
 - If I write a sequence, you can synthesise it

Experiment

Trial and error

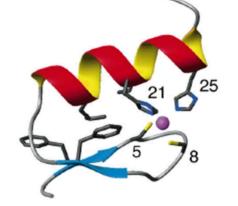
propose changes to sequence, try it out – not much fun

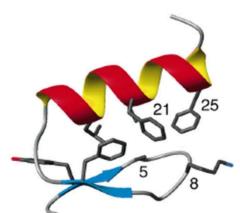
For binding

- phage display, in vitro evolution
- Computational methods...

History

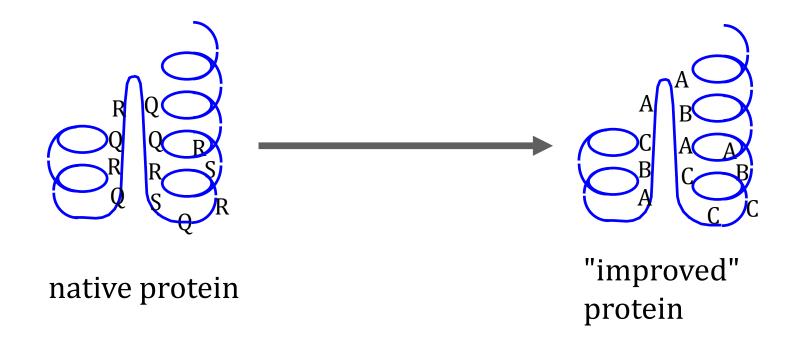
1997


designed QQYTAKIKGRTFRNEKELRDFIEKFKGR


native KPFQCRICMRNFSRSDHLTTHIRTHTGE

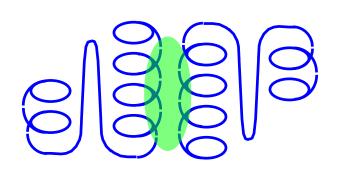
Zn-binding protein

- redesign sequence
- about 20% similar to start
- synthesised
- structure solved by NMR

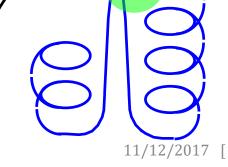

These methods are not routine

Specify the problem

Make a useful structure more stable


Rules

- structure should not change
- some sites are fixed (active site, other binding)


Fixing / specifying residues

Examples

- lysine (K) often used for binding
 - change a residue to K and protein does not fold
 - mission:
 - adapt the rest of the residues to be stable
- change all residues, but not those in active site
- change some residues at surface to be soluble
- change some residues at surface to stop dimers

active site /
do not
break

Scores versus search

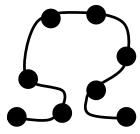
score / energy

- a function f ({s}, {r})
 for sequence {s}, coordinates {r}
- if I change a residue in *s*
 - does my structure become more stable?

search method

- many possible sequences
- how to decide which residues / sequences to try out

Searching

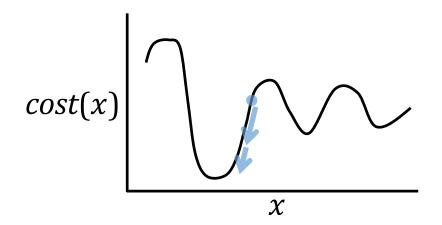

Imagine we have score function $f({s}, {\bf r})$

Systematic search

for
$$n_{res}$$
 we have $20 \times 20 \times \dots = 20^{n_{res}}$

Friendly search space? (can I just optimise each site?)

• change here affects there affects ...

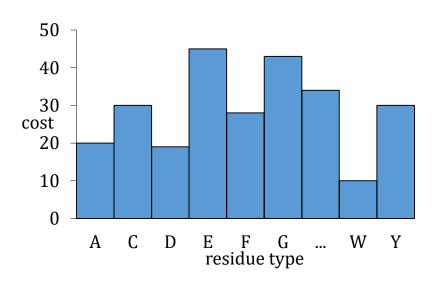

Consequence

• if I change this one, I have to change that one, then next, ...

Optimisation Problem

Easier problems

- gradient information
- can recognise minima

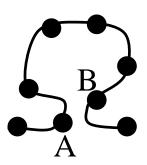


- we have directions
 - if a move in one direction is good, try to keep going

Contrast with sequences / discrete problems

Discrete problems

- no gradients
- no directions labels are arbitrary (ACDE or ECAD)
- lots of local minima
 - diagram is for just 1 of n_{res} sites



a bad method

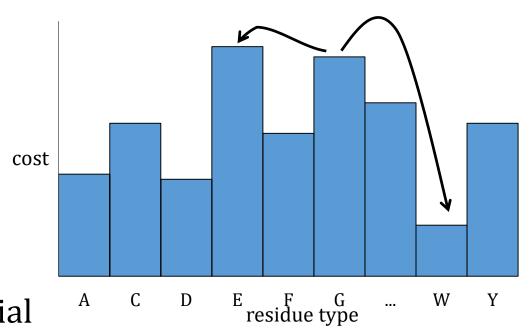
- some starting sequence $\{s\}$ from s_1 to $s_{n_{res}}$
- score $E_0 = f(\{s\}, \{r\})$
- pick a position *i*
- change s_i to some different residue type (trial)
- score $E_{trial} = f(\{s_{trial}\}, \{r\})$
- if $E_{trial} < E_0$ then accept s_{trial} say $\{s\} \coloneqq \{s_{trial}\}$

Will it work?

- simplest example of correlations
- any change to A must change B

Taking bad moves

I cannot simply look for good moves – alternatives?


- change two residues at a time ? (400 possibilities)
- three residues at a time (8000 choices)
 - will not generalise

Different philosophy

 change one residue at a time, but allow the system to sometimes get worse

Monte Carlo - accepting bad moves

- decide on a move (change some s_i)
- if system is better
 - keep trial move
- if system is worse
 - slightly worse
 - probably keep trial
 - much worse
 - throw away

Name of procedure: Monte Carlo

what else do we need?

Annealing

At the start, we are far from optimum

take big moves, accept bad energies more often

Later, we are closer to a good sequence

- do not accept so many bad moves
- try to optimise details, locally

Name for this idea – annealing

formalise this? secret overhead

Monte Carlo properties

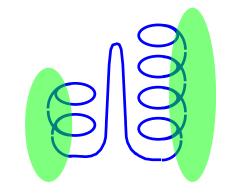
Deterministic?

 you and I write programs without bugs get different answers

Do we get to optimum?

almost never

Difficult?


very easy to program

Fundamental problem – search space is too big

reducing the search space - types of residue

look at green areas

- should be charged or polar
- not 20^n maybe about 11^n

Can do the same for buried residues (A, I, L, M, F, V)

• gives 6^n

reduce search space - remove dead ends

Consider one position with 20 possibilities

- I can have a residue of type a
 - what is the best score you could possibly have for a given his neighbours ? a_{best}
 - what is the worse score you could have ? a_{worst}

At this site loop over the 20 amino acids

- for the 20 possibilities *a*
 - for 19 alternatives *b*
 - if $b_{worst} < a_{best}$
 - *a* cannot be possible at this position

Name: pruning / dead end elimination / wegschneiden

Pruning

sometimes finds only one amino acid type is possible at a position

usually makes search space much smaller

side-chain conformations / rotamers

Side chain conformations? same problem as modelling

- need score of side-chain, but you do not have coordinates
- use coordinates from rotamer library
 - maybe simplified to one angle χ_1

Original problem - choose from 20 amino acid types

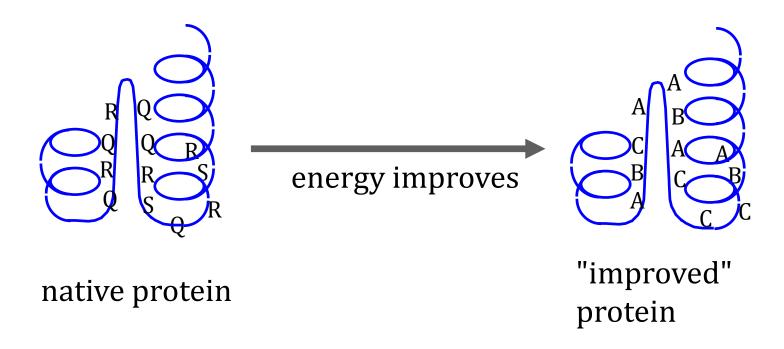
• now $\approx 20 \times 3$ types

Fits naturally into

- Monte Carlo try a new amino acid rotamer
- Pruning method which amino acid+rotamer can be excluded?

score functions / energies

How sophisticated?


- backbone is fixed
- using rotamers
 - no need to worry about bonds, angles, torsion angles

Mainly

- van der Waals
- electrostatics

Score functions / Energies

Is energy enough? Is this relevant?

Question here is stability

two problems

energy differences

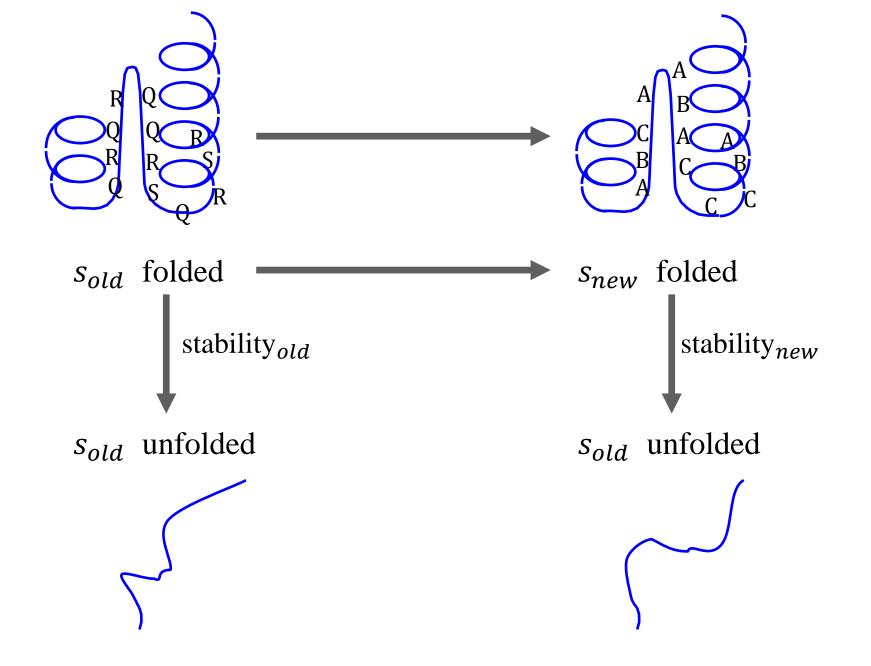
unfolded

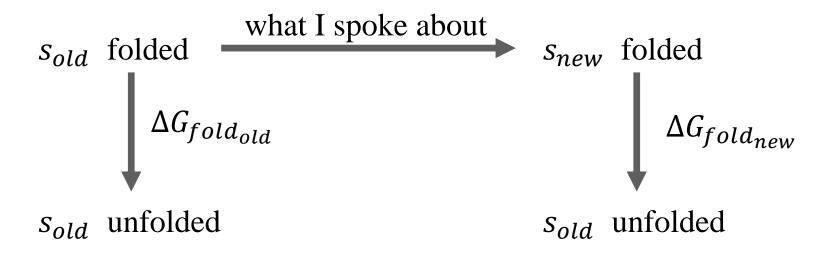
Define stability

free energy change upon folding?

$$\Delta G = \Delta H - T \Delta S$$

consider ΔH (what we can model)


Have I considered $H_{unfolded}$?


Am I looking at the correct energy change?

Change an amino acid and native has better energy

- what if unfolded also has better energy?
 - think of a surface residue

native

What really matters

$$\Delta G_{fold_{old}} - \Delta G_{fold_{new}}$$

I

It is not enough just to look at structures

should also look at non-structures / unfolded

What have I neglected?

Free energy change has entropy $\Delta G = \Delta H - T\Delta S$

- my energy models do not have ΔS
- is this important?
- the unfolded states are very disordered

How well do methods work?

Success stories

- example at start of lecture
- many more individual stories

Not at all routine

many failed attempts not spoken of

Optimism

You do not have to find the optimal sequence

- think of man, monkey, horse haemoglobin
- lots of room for changes in sequence

Pessimism

Designed sequences must

- fold
- be expressed and produced