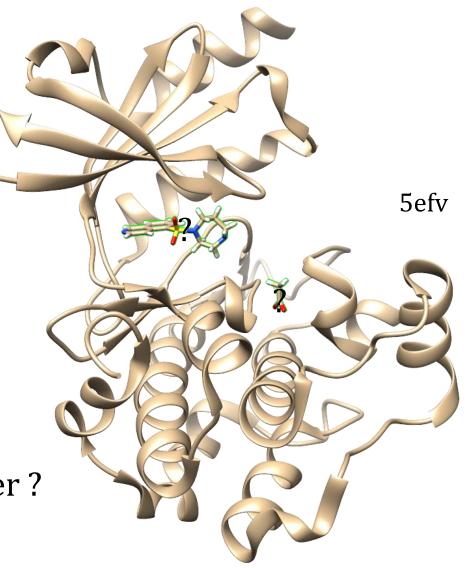
Energies


Where do you think your drug is binding?

 necessary if you want to think about alternatives

If I modify the ligand

- will it bind better? worse
- will a side chain rotate?

 Would a side chain prefer to H-bond to ligand or water?

more energy questions

Anfinsen's hypothesis

• Proteins fold to lowest (free) energy conformation

If I can predict energies

can I predict the structure of proteins?

Does it work?

Later...

3njf

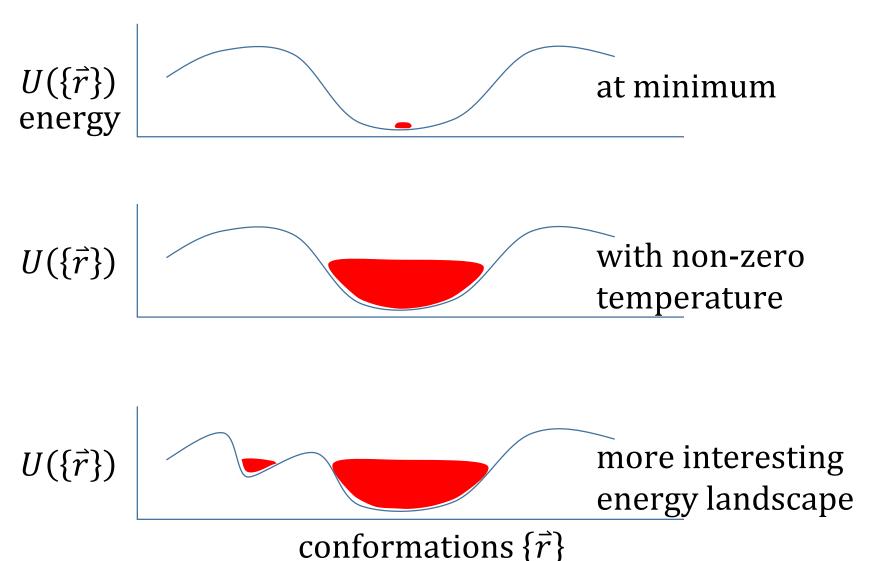
Things we want to predict

- conformations of proteins, nucleotides
- binding constants (strong / weak binding)
- binding sites

What drives the world?

energies

What do we learn about energy states?


- Things tend to go down in energy
- electrons fall down and emit a photon
- high energy states decay via vibrations gives off heat

Two complications

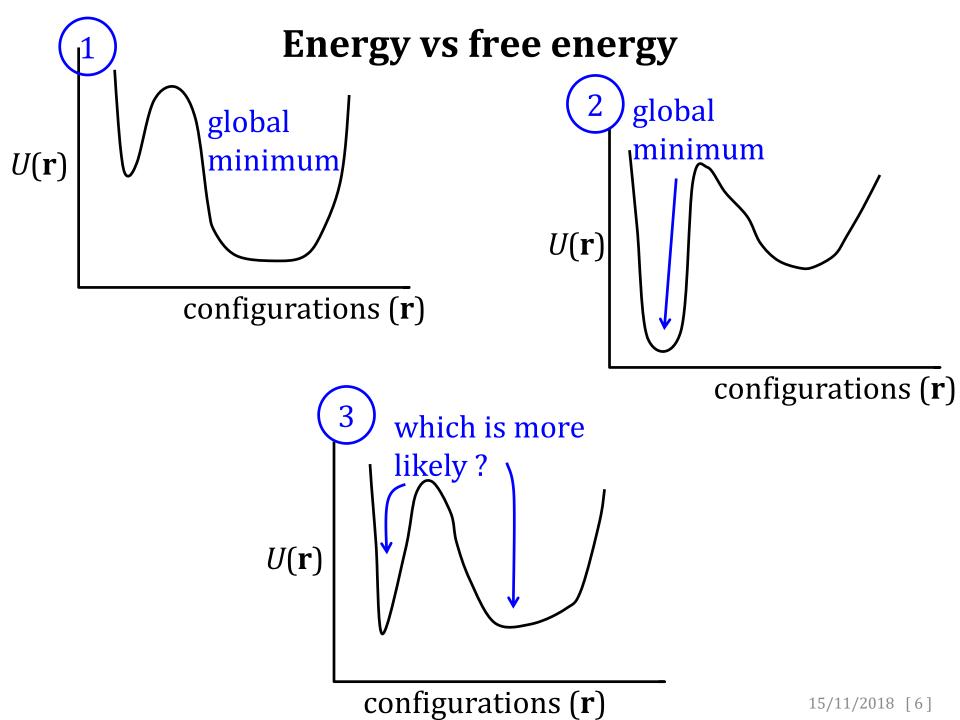
- equilibria and temperature
- free energy and entropy

Energies and distributions

Do we end up in the lowest energy conformation?

15/11/2018 [4]

Energies and distributions


The lowest energy state is not the only relevant one

but it is the most populated – what we are normally interested in

What is the term used in 1st year chemistry?

• Energy or free energy (ΔG) ?

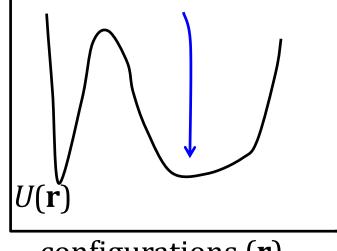
What is the practical meaning? ...

Energy / potential energy / free energy

Potential energy

- is easy
- important
- not the whole story

Systems


- like to go downhill in potential energy
- likely to go towards bigger (less ordered) regions
- net effect potential energy and entropy are both important

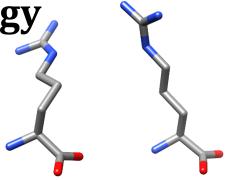
formalise a bit ...

Entropy contribution

$$\Delta G = \Delta H - T \Delta S$$

- let us say ΔH is potential energy
- *T* temperature
- ΔS change in entropy

configurations (r)


Why is entropy so difficult to estimate?

- these two conformations have different potential energies
- they are part of the same set of conformations
- entropy is a property of all states / conformations
- entropy of a conformation has no meaning

models for potential energy

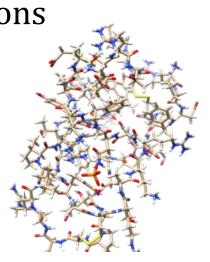
Why talk about potential energy?

we have models for potential energy

Can I model entropic effects?

- entropic effects?
 - simulation methods
 - ugly approximations

- today we discuss potential energy
- start with fundamental physics


Chemistry is a approximations

Physics is not helpful

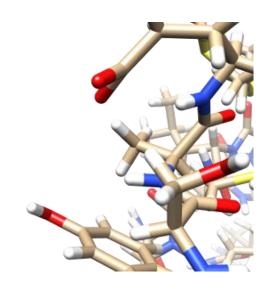
strong	particle physicists
weak	
gravity	astronomers
electromagnetic	chemists

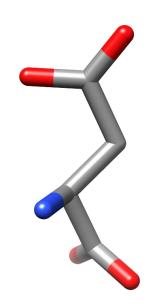
True – not helpful – chemists use approximations

- I have coordinates and names of atoms
 - want potential energies
 - electrostatics
 - lennard-jones
 - bonds
 - angles
 - torsion angles

electrostatics

Can we just use Coulombs Law?

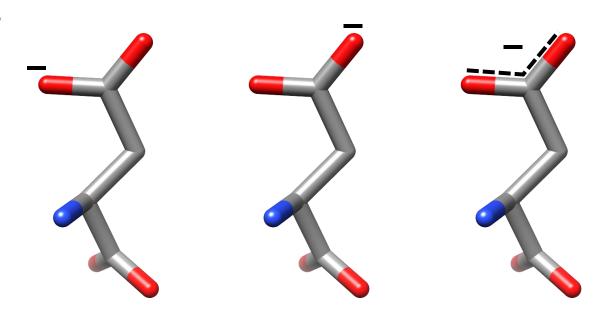

$$U(\vec{r}_i, \vec{r}_j) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

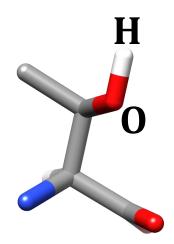

- charges q_i , q_j
- distance r_{ij}
- constants $4\pi\epsilon_0$

Yes, but what are the charges?

Look at asp

• I know it has a charge of -1, but where?




charges

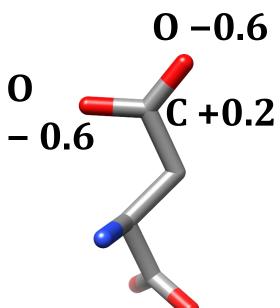
where is the charge?

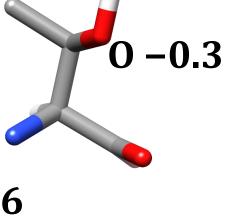
spread around

A neutral but polar sidechain

an OH group

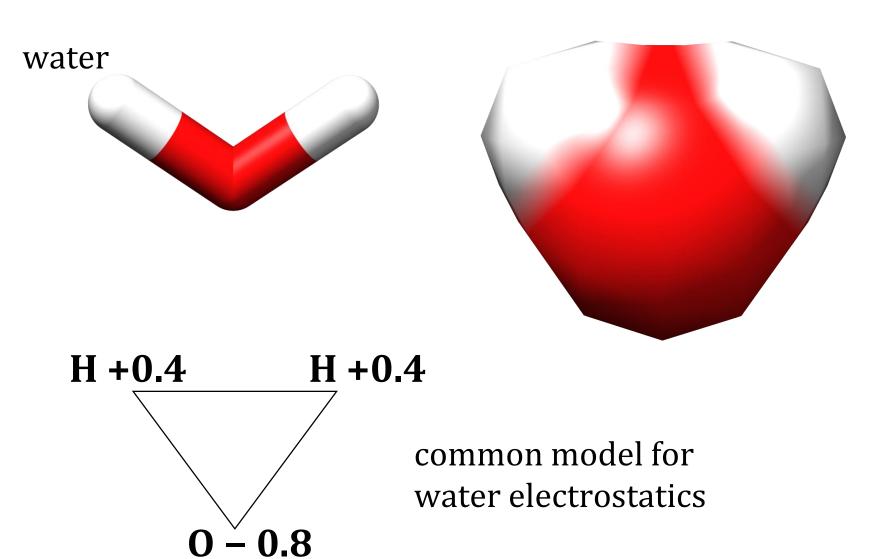
- is neutral
- likes water


how does one model these properties?


partial charges

- assign a value like $q_{\rm H} = 0.3$ or $q_{\rm O} = -0.3$
- overall correct charge
- locally we have correct properties
 - imagine two OH groups come together
 - only sensible geometries are preferred

 similar rules for all atoms in polar and charged environments


famous example

H + 0.3

a water model

partial charges

Weak physical basis

- there is no such thing as 0.4 of an electron
- they are a good approximation

Distances

• electrostatic interactions are very small after about 15 Å

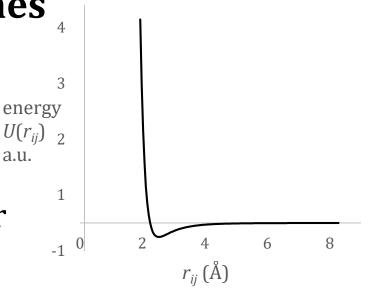
What next?

why does argon form a liquid?

Lennard-Jones / van der Waals

argon / methane / benzene / N₂

- completely neutral / non-polar
- do form liquids
- electrostatic effect, but complicated


Lennard-Jones

a.u.

- weak
- between all atoms not connected by bonds or bond angles
- all atoms like to be near each other
- atoms do not want to be on top of each other

- short range (disappears $r_{ij} > 8 \text{ Å}$)
- only important energy term in middle of proteins
- ask me why I do not write a formula
- summarise ...

non-bonded energies

so far - two contributions to energies

- 1. electrostatics (energy= $q_i q_j/Dr$)
- 2. lennard-jones

Call them "non-bonded" energies
Distances – after about 10 or 15 Å nearly zero

medium size protein – lots of atoms do not directly interact

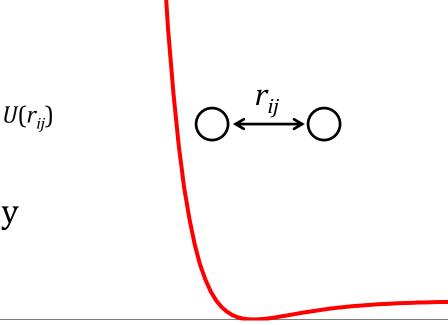
What else is there?

- bonded contributions
 - bonds
 - angles
 - torsion angles

Bond energies?

Push two bonded atoms together?

the Lennard-Jones term would go up


Pull them apart

eventually the bond will break

Will you meet this?

hopefully no

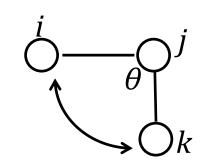
bond vibrations are tiny

 r_{ii}

Bonds

- at room temperature we can treat them as fixed
- if you have a model with bad bonds, energy is not so helpful
 - you have a very bad model
 - very bad or very very bad is usually not important

Who cares about bond energies?


maybe people simulating chemical reactions

What about angles?

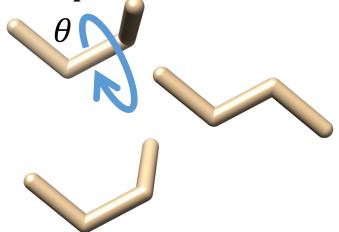
Angles

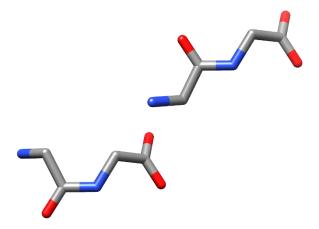
Are they interesting?

- not very
- a bit more flexible than bonds
- might fluctuate a bit at room temperature

If you have a tetrahedral carbon

• an angle is 115° instead of 109.5° it is not just high energy It is broken


What is more interesting?


torsion angles

More interesting

- most single bonds can rotate at room temperature
- there are preferred conformations
- number of minima varies
- butane 3
- peptide bond 2 (cis / trans)

What would the form look like?

Form of torsion terms

a periodic function

$$U(\theta) = \sin(\theta)$$

with a shift of ν

$$U(\theta) = \sin(\theta - \nu)$$

with periodicity *n*

$$U(\theta) = \sin(n(\theta - \nu))$$

how high are the barriers?

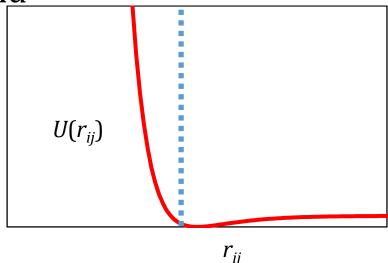
$$U(\theta) = k_{torsion} \sin(n(\theta - \nu))$$

no physics – just created

summarise energies

A classic force field has...

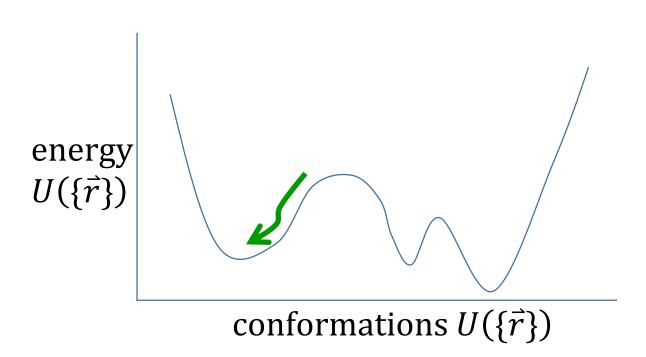
electrostatics	important	varies as atom move	
lennard-jones	important	real meaning of steric effects / collisions	
bonds	do not change much		
angles		do not change much	
torsions	important		


Not all force fields are the same

Parameters differ (partial charges, barriers)

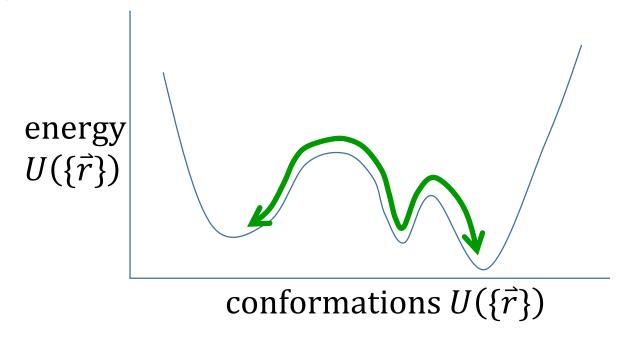
Forms differ

- one often does not care about details
- drop terms that are not interesting


treat bonds and angles as rigid

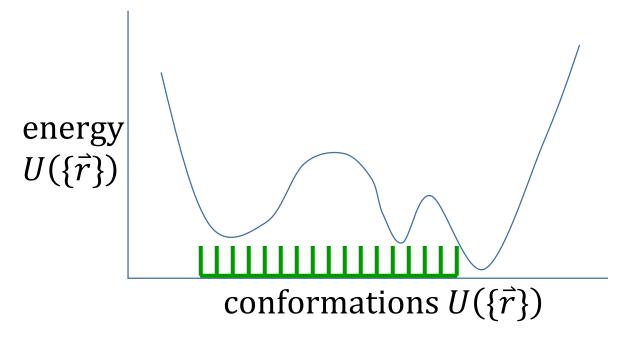
How do you use them? (1)

3 or 4 ways


I have coordinates and just want to remove clashes and small problems

1. energy minimisation / gradient descent

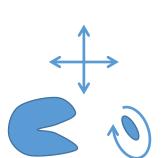
How do you use them? (2)


I want to search a big space or simulate dynamics

2. molecular dynamics (or Monte Carlo) computationally expensive

How do you use them? (3)

small set of possibilities


3. grid (gitter) search

How big is the search space? protein + ligand

Imagine

- rigid ligand and spherical
- *n* possibilities in each dimension
- n^3 is search space size (3 degrees of freedom)

- if ligand is not round rotation about *x*, *y*, *z*
 - extra n^3 rotations
 - total search space is $n^3n^3 = n^6$ (6 degrees of freedom)

• space is now $n^6 n^m$ let us say n^{6+m}

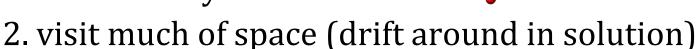
conformational space for protein

Previous slide assumed protein was rigid How big is the space for a protein?

- say bonds and angles are fixed
- we have *m* torsion angles
- if each has n possibilities, we have n^m search space
- chemistry simplification
 - -there are 3 sidechain conformations then 3^m search space
- for a protein with n residues we have ϕ and ψ angles
- total space is $(2 \cdot 3)^m$
- for a protein of 100 residues = 6^{100} possibilities
- cannot visit them all

the set of conformations is very big

Answer to question at start


• if I can calculate energies – can I predict protein structure?

Entropy

Everything I have said was focussed on potential energy, but $\Delta G = H - T\Delta S$

How important is entropy?

- protein folding HUGE there are many unfolded states higher entropy – preferred
 - you need a lot of favourable potential energy
- ligand binding
 - free ligand can
 - 1. rotate freely

 many of these states (entropy) are lost when a ligand binds

summary of energies

- remember components of potential energy and which are important
- why potential energy is not sufficient to predict behaviour
- even if you could predict energies, could you predict structure?