NMR (Nuclear Magnetic Resonance Spectroscopy)

Literature / background (already in Stine)

Current standing
• ≈ 11% of current structures solved by NMR (11 950 structures, 9287 proteins)
• about 1/4 of smaller structures (<100 residues)
How many structures by NMR?

- 0 structures in 1990
- 100 structures in 1995
- 200 structures in 2000
- 300 structures in 2005
- 400 structures in 2010
- 500 structures in 2015

Andrew Torda
25/10/2018
sizes of NMR structures in protein data bank

- 60 – 110 residues (lots)
- 110 – 150 not so many

Andrew Torda
25/10/2018
What is coming

Background to NMR – chemistry

Calculating structures
- distance geometry
- problems with structures

For chemists: no
- chemical shifts
- 2D and higher
- residual dipole coupling, spin labels
- ...

Andrew Torda
25/10/2018
History

Younger field than X-ray

- 1 \(\frac{1}{2} \) Nobel prizes (Ernst, Wüthrich)

First real protein structure about 1985 or 1986

NMR from our viewpoint

A way to get structures - our focus
Can provide information on

- dynamics, stability
- interactions (other proteins, small molecules)
Overview – how we get coordinates

- protein in solution
- record spectra
- assign peaks to 1H, 13C, 15N nuclei
- record some more spectra
 - distance information (mostly)
 - some internal angles
- reconstruct structure
Nuclei have spin

- have a charge and act like magnets
- put them in a field and they will align with it

- now apply a magnetic field
 - they "precess" around the field
 - two possible states

\[B_0 \] is applied field
\[v \] speed of rotation (many MHz / \(10^6\) Hz)
Do nuclei like fighting the field?

Is a nucleus really happy facing the wrong way?
• what if we push it the wrong way?
 • wants to get to low energy state – emits a photon
What NMR records

- Turn on a field
- Put in energy
- Let them relax

Some nuclei not doing much

Applied field
Some align
Important nuclei (spin $\frac{1}{2}$)

<table>
<thead>
<tr>
<th>nucleus</th>
<th>sensitivity</th>
<th>abundance</th>
<th>$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>1</td>
<td>natural</td>
<td>cheap</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1.6×10^{-2}</td>
<td>1%</td>
<td>$$$</td>
</tr>
<tr>
<td>^{15}N</td>
<td>10^{-3}</td>
<td>0.4%</td>
<td>$$$</td>
</tr>
<tr>
<td>^{31}P</td>
<td>7×10^{-2}</td>
<td>natural</td>
<td>cheap</td>
</tr>
</tbody>
</table>

Natural isotopes are ^{12}C and ^{14}N not ^{13}C or ^{15}N

• if you want to use C or N – expensive labelling

Proteins

• ^1H, ^{13}C, ^{15}N
NMR for us

You get a spectrum (1D, 2D, ..)
- Where are the peaks?
 - For chemists – not this course

We care about structural information
- This nucleus affects that nucleus
 - (field splitting, relaxation, ...)
- Can be related back to structure
To calculate structures?

1. distance information

2. dihedral / torsion angle information
Distance information / the NOE

Most important (NOE = nuclear overhauser effect)
- an effect which depends on how close in space nuclei are
- NOE $\propto r^{-6}$
- usually only up to about 5 - 6 Å

Story
- two spins' dipoles interact
- cross relaxation phenomenon
 - red relaxing (jumping to lower energy)
 - affects black
Other structural information

- NOE – information about short (< 5 or 6 Å) distances
- there is more – angles
 - mainly J coupling

Amide NH to H^α coupling

$cis < 6 - 7$ Hz
$trans \sim 10$ Hz
$^{3}J_{HN\alpha}$ coupling

formalised as

$^{3}J_{H\alpha NH} = 6.4 \cos^2 \theta - 1.4 \cos \theta + 1.9$

Problems...

Where do 6.4, 1.4, 1.9 come from?

Do not learn for Klausur

Amide NH to H^α coupling

- can help distinguish α from β
- not always seen (exchange / motion)
- NH not always present
- other angles?
 - other vicinal protons
 - C^α to C^β
Problems with J-coupling

We have a formula

$$^3J_{\text{HaNH}} = 6.4 \cos^2 \theta - 1.4 \cos \theta + 1.9$$

measure J, solve for θ

Most of the time there is more than one solution (θ)

- use only large J

Dynamics and errors

- look near -90°
Practical NMR

We have some basic methods

Real NMR

- more techniques
 - 2D and more
 - identifying specific kinds of atom
 - spreading peaks out
Information summary

<table>
<thead>
<tr>
<th>phenomenon</th>
<th>assignments</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical shift</td>
<td>important</td>
<td>not much used</td>
</tr>
<tr>
<td>spin-spin ((J))</td>
<td>important</td>
<td>torsion angles</td>
</tr>
<tr>
<td>NOE</td>
<td>important</td>
<td>distances</td>
</tr>
</tbody>
</table>

More spectroscopy

- filtering according to chemistry, atom types
- \(n \)-dimensional methods

Structural information

- labels for broadening / shifting peaks
- orientation of bonds to reference ..
Structures from NMR data

Available information
• distances
 • short (< 5 to 6 Å)
 • incomplete
• some dihedral / torsion angles
• does this define a structure?
 • strictly no

Coming
• distances in 2D and 3D
• Distance geometry – two versions
Determining distances (ideal)

- 2 points 1 distance
- 3 points 3 distances...
 - think of $3N_{\text{atom}}$ distances
 - remember $N_{\text{atom}} \approx 10$ or $20\, N_{\text{res}}$
Underdetermined distances

Think in terms of triangles ...

- $d_{ik} < 6 \text{ Å}, \ d_{jk} < 6 \text{ Å}$
- where is k?

A few more distances...

- more and more distances are useful
Impossible distances

No overlap?
• experimental error
• nowhere for k to go

Real data

Protein of N_{res} residues, you might have 5 or 10 N_{res} distances
• want more like $3N_{atom} \ (30 - 60 \ N_{res})$ distances if perfect
 • needs much more data...
 • lots of chemical data
An analytical solution?

Is there some formula which will give you structures from distances?

- Could I say $a^2 = 2bc \cos \alpha$ or $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \cdots$?

There is not enough experimental data

- can be fixed partially (coming soon...)

Serious problems

- you do not know a, b, c, α, \ldots exactly – you cannot get other distances or angles
 - how would you deal with a range (3 – 5 Å)?
- even if you knew many distances almost exactly
 - numerical errors accumulate (badly)
Mission

• gather all experimental data
• mix in chemical data
• make all distance information as tight as possible
• put an upper bound on the distance between every pair of points
• put a lower bound on every distance (less important)
• somehow generate coordinates
• start with toys and triangles
Structures from distance information

Start in two dimensions.

Ein freundliches Dreieck

\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 16 \]

- fix \(i \), put \(j \) on \(x \)-axis and make coordinates
- solve analytically
Underdetermined data

\[d_{ij} = 11 \]
\[d_{ik} = 13 \]
\[12 < d_{jk} < 20 \]

More like NMR data

Unique solution?
 No
Impossible data

distance too big
\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 25 \]

distance too small
\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 1 \]

no 3D structure
Gathering data

- add in chemistry
- use to get more
 - mix chemistry + measurements
- what comes easily from chemistry?
Gather as much data as possible

Simple, geometric information
- bonds – standard
- angles – standard
- simple distances from bond angles
- dihedral / torsion angles

\[d_{hk}^2 = (d_{ij} - d_{hi} \cos \theta_{hij} - d_{jk} \cos \theta_{ijk})^2 + (d_{hi} \sin \theta_{hij} - d_{jk} \sin \theta_{ijk} \cos \tau_{hijk})^2 + (d_{jk} \sin \tau_{hijk})^2 \]

set \(\tau = 0 \)
- minimum
\(\tau = \pi \)
- maximum

Andrew Torda
25/10/2018
[37] text book
How to get more distance information

- impose some distance limits generally
- intuitively
 - stretch out a protein and there is a limit to length

Can one formalise this?
More general / triangle inequality

What limits can be worked out?

upper bound
\[d_{jk} \leq d_{ij} + d_{ik} \]

lower bound
\[d_{jk} \geq |d_{ij} - d_{ik}| \]
Where to use triangle inequality

One could avoid some ugly trigonometry

more general

implied 6 or 7 Å

5 Å
Most general triangle bound inequality

Triangle bound should be satisfied by any three points

- chemists
 - triangle bound smoothing

- informatik
 - all points shortest path problem
All points shortest path (Floyd)
Bound smoothing / Floyd

Running time

\[O(n^3) \]
Distance matrix so far

We can build a distance matrix of upper limits
• consistent with all bonds and angles and other information

Can do the same for lower bounds
• every pair of atoms
 • invent some lower bound (atomic radii)

Does this define a structure?

Almost certainly not
• still no way to get to a 3D model
From distances to coordinates

How would you build coordinates from distances?

- stepwise?
 - error prone, errors add

- history
 - early 80's
 - methods which are tolerant of errors
 - metric matrix method
Metric matrix method

- get best upper bounds
- get best lower bounds
 - guess distances between
 → trial distance matrix
- convert to centre of mass matrix (metric matrix)
- magic conversion to coordinates
 - if metric matrix has three positive eigenvalues
 - error free coordinates
 - real coordinates
- lots of errors
- initial coordinates not healthy
- refine
Metric matrix method

- get best lower bounds + upper bounds
 - guess distances between
 → trial distance matrix

- repeat n times
 - get n guesses
- some OK, some bad
- repeat until you have 20 or 100 structures you like

- OK = agrees with experimental data + chemically OK
Chirality

2D version

• can *not* be rotated on to each other
• can not be distinguished by distances

3D

• chirality is random
• problem ? no
 • flip all coordinates and check

Local chirality ...
Overall / Local chirality

- overall chirality
- local chirality

- some points correct
- some wrong
- If you invert a site, will damage other parts of structure
The Optimisation problem

Find the coordinates that put atoms so they agree with experimental data

- cost c is $\sum_i (r_i - r_i^{measured})^2$ for each measured distance r

Maybe we do not work directly with atoms or coordinates $\{\mathbf{r}\}$
work with angles
Distances and angles

One angle is easy

longer distances depend on several angles
Distances and angles

Each angle affects many distances

What does one know?
- simple optimisation will not work
Optimisation Strategy

Start
 • concentrate on distances with few angles in between
 • shorter distances become correct

Add in more distances
 • re-optimise

Add in more distances
 • ...

Andrew Torda
25/10/2018
Variable target function

Work with torsion angles

ideas from Braun and Gō, 1980s
Stepwise variable target function method

Collect experimental data

<table>
<thead>
<tr>
<th>distance in sequence</th>
<th>residue 1</th>
<th>atom 1</th>
<th>residue 2</th>
<th>atom 2</th>
<th>distance in space (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>H\text{α}</td>
<td>6</td>
<td>H\text{N}</td>
<td>4.0</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>H\text{α}</td>
<td>8</td>
<td>H\text{γ}</td>
<td>4.4</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>H\text{α}</td>
<td>82</td>
<td>H\text{N}</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>H\text{α}</td>
<td>5</td>
<td>H\text{γ}</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>H\text{β}</td>
<td>8</td>
<td>H\text{γ}</td>
<td>3.8</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>H\text{α}</td>
<td>3</td>
<td>H\text{N}</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Sort according to distance in sequence
Stepwise variable target function method

<table>
<thead>
<tr>
<th>distance in sequence</th>
<th>residue 1</th>
<th>atom 1</th>
<th>residue 2</th>
<th>atom 2</th>
<th>distance in space (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>Hα</td>
<td>8</td>
<td>Hγ</td>
<td>4.4</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>Hα</td>
<td>3</td>
<td>HN</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Hα</td>
<td>6</td>
<td>HN</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Hβ</td>
<td>8</td>
<td>Hγ</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Hα</td>
<td>5</td>
<td>Hγ</td>
<td>5.0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>Hα</td>
<td>82</td>
<td>HN</td>
<td>4.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Stepwise variable target function method

... 80 ...
... 2
Hα 82
Hν 4.5
... 6 3 7 1 1 0 0 0 3 8 8
... 2 3 5 8 6 3 8 8
Hα Hα Hβ Hα Hα Hα Hα Hα
Hν Hν Hν Hν Hν Hν Hν

... distance in space (Å) ...

Hα Hγ
5.0 3.8 4.0 5.0
Hα Hγ
8.0 8.0 8.0 8.0

1 1 2 2 1 2 3rd ...

in sequence residue atom residue atom distance later
Hope..

![Diagram showing error vs. conformations at different steps: 1st step, later step, and full surface. The graph indicates the global optimum.](image)
Variable target function vs metric matrix

Metric matrix *versus* variable target function

- proponents of both

variable target function probably more popular

- no problems with chirality
Real implementations of distance geometry

- not small programs
- Input:
 - list of protein sequence
 - set of distances
- most of code
 - libraries of standard amino acids
 - code to do geometry and work with standard geometries
- other information
 - angle restraints
 - convert to distances for metric matrix
 - natural for variable target function
Output from programs

Structure impossible?
• program dies or
• best possible solution

Structure not determined?
• set of possible conformations (10 to 100)

example 1sm7
Lots of models in a PDB file

- big difference compared to X-ray coordinates
- typical
 - ends (C- and N-termini) badly defined
 - loops poorly defined
- spectroscopists say this reflects mobility
- problems with many models
 - difficult to work with
 - arbitrary which to select for calculations
 - averaging usually not a good idea
- Is this the absolute truth? No.
 - number of models arbitrary
 - different methods (programs /details) give different results
Finished with making coordinates?

- structures may not be well defined
- can they be improved? probably
 - restrained molecular dynamics (more next semester)
- normal MD \(E_{phys}(\vec{r}) = \text{bonds} + \text{angles} + \text{electrostatics} \ldots \)

- restrained MD \(E_{total}(\vec{r}) = E_{phys}(\vec{r}) + E_{restr}(\vec{r}) \)

- and... \(E_{restr} = \sum_i k_i (r_i^{\text{struct}} - r_i^{\text{measured}})^2 \)

- where \(i \) refers to the distance restraint

Mission - to minimise \(E_{total} \)

- result?
- structures
 - agree with restraints + low energy
What else can one do with NMR?

NMR sensitive to dynamics
• is this part of the protein mobile?

Interactions
• add small molecule – which parts of spectrum change?

Still more structural information
• residual dipolar coupling
• spin labels
Summary

- What information does one have?
- Is it enough? Is it consistent?
- Two methods to generate structures
- Differences in handling chirality