Einführung AST Übung

Übung

Rahmen

- Timur (olzhabaev@zbh.uni-hamburg.de)
- Vertiefung einzelner Vorlesungsthemen
- Input, Übungsblatt
- Fragen + Diskussion (relevant für Prüfung)

OLAT

- https://www.openolat.uni-hamburg.de
- "67-104 Angewandte Bioinformatik: Strukturen"
- UHH Anmeldedaten
- Vorlesungsfolien, Übungsblätter und -folien, Zusatzmaterialien
- Nicht in Stine

Rechnernutzung

Rechnernutzung

Rechner

- Vorsichtiger Umgang
- Bei Problemen melden
- Nach beenden der Arbeit, Rechner nicht herunterfahren
- \Rightarrow Nur Benutzer abmelden, Bildschirm ausschalten
 - Gemäßigtes Drucken auf tiber2ps

Linux

- Freies Betriebssystem
- Bewährt in Naturwissenschaften / Informatik
- Heutzutage nicht unbequem

Software

- Startmenu (unten links bzw. win-Taste)
- Dateimanager (dolphin bzw. Ordnersymbol)
 - Desktopumgebung startet alles mit einem Klick
- Firefox
- Text editor (kate)
- Libreoffice (writer pprox Word, calc pprox Excel)

Kommandozeile

- CLI, terminal...
- Textbasiertes Rechner- und Programminterface
- Konsole

Kommandozeile Navigation

- Befindet sich immer "in" einem Verzeichnis im Dateisystem (links in der Eingabeaufforderung)
- Beginnt im Home-Verzeichnis des angemeldeten Benutzers
- Auflisten von Dateien und Unterverzeichnissen: 1s
- Erstellen von Verzeichnissen: mkdir verzeichnisname
- Wechseln von Verzeichnissen (relativ zum aktuellen)
 cd pfad/zum/verzeichnis
- Übergeordnetes Verzeichnis: ..

Kommandozeile Navigation Beispiel

mkdir AST

ls

... das neu erstellte Verzeichnis sollte neben den Standardverzeichnissen auftauchen

cd AST

ls

... sollte leer sein

cd ..

Starten von Programmen aus der Kommandozeile

- Dateinamen als Argumente
- Beispiel: kate text_datei.txt
- ⇒ Öffnet Datei text_datei.txt mit dem Texteditor (bzw. erstellt sie neu)
 - Blockiert die Kommandozeile, bis das Programm beendet wird
 - "&" als letztes Argument bewirkt Start im Hintergrund
 - Beispiel: kate text_datei.txt &

Strukturen

Strukturen

Strukturbioinformatik

Hauptsächlich:

- Proteine
- RNA
- Liganden / Substrate

Manchmal:

- DNA
- Lipide

Strukturen

Aminosäuren

Jeremy M Berg, Lubert Stryer, and John L Tymoczko. Stryer biochemie. Springer-Verlag, 2015.

Polypeptidkette

Einführung

David L Nelson, Albert L Lehninger, and Michael M Cox. Lehninger principles of biochemistry. Macmillan, 2008.

Proteinfaltung

Jeremy M Berg, Lubert Stryer, and John L Tymoczko. Stryer biochemie. Springer-Verlag, 2015.

Strukturen

$\alpha\text{-Helix}$

Jeremy M Berg, Lubert Stryer, and John L Tymoczko. Stryer biochemie. Springer-Verlag, 2015.

β -Faltblatt

Jeremy M Berg, Lubert Stryer, and John L Tymoczko. Stryer biochemie. Springer-Verlag, 2015.

Proteinstruktur

Jeremy M Berg, Lubert Stryer, and John L Tymoczko. Stryer biochemie. Springer-Verlag, 2015.

Einführung

UCSF Chimera

UCSF Chimera

UCSF Chimera

- Interaktive Visualisierung und Analyse von Molekülstrukturen und -sequenzen
- Verfügbar unter: https://www.cgl.ucsf.edu/chimera/
- Großer Teil der Übungen wird Chimera ausgiebig nutzen
- Steuerung über Menus und / oder interne Kommandozeile wichtig mit beidem umzugehen

Heute und nächste Woche: Vertraut machen mit Chimera

Starten von Chimera

/usr/local/zbhtools/chimera/1.13/bin/chimera &

Fehlermeldung bzgl. OpenGL kann erscheinen - ignorieren