NMR vs X-ray, precision, certainty

Main methods

X-ray crystallography and NMR

Others

- cryo-electron microscopy (cryo EM)
- small-angle X-ray scattering (SAXS)
- neutron diffraction
- Dominated by proteins, but most comments apply to nucleotides

Techniques for structures

Structure solving techniques

X-ray 89 %
NMR 9 %
cryo-EM 2 % nobel prize 2017

Can you combine methods?

- X-ray + NMR rare
- X-ray + cryo-EM more common
- low and high-resolution X-ray sometimes

Why focus on X-ray and NMR?

- emphasis in this course on atomistic detail
- still most important

cryo-EM and SAXS

Why will I not speak about cryo-EM?

- fashionable, but look at resolution
- distance between two residues $(C_i^{\alpha}, C_{i+1}^{\alpha}) = 3.8 \text{ Å}$
- cryo-EM cannot tell which residue is which
- getting better every year
- not quite atomic detail

SAXS – even less detail

SAXS = small angle X-ray scattering

Genauigkeit

Why do I care about accuracy?

- What is a bond length? (1.07, 1.54, 1.32 .. Å) easy
- How does the energy change as I move an atom?
- I want to understand protein-ligand binding
 - where is my ligand?
 - with which residues does it interact?
 - can I predict the effect of a mutation / substitution ?

A line from the protein data bank

```
ATOM 41 N ASP A 3 35.790 11.466 -9.466 1.00 16.15
```

$$x = 35.790, y = 11.466 z = \cdots$$
 total fantasy (10⁻¹³ m)

Error definitions

- Accuracy, precision not good words
- Certainty / uncertainty / confidence more in statistics
- Resolution nice word defined later

What do I mean by error? $x \pm \varepsilon$

• should say 90% confidence, one σ , 75 % quartiles, ...

How do I interpret this?

I imagine a Gaussian (normal) distribution

accuracy / precision

basically bad words

do not use Wikipedia + Übersetzung schwierig

if you know it, you would correct for it

large random error

repetitions increase certainty

usually modelled with a gaussian

Systematic Errors - are they relevant?

Hopefully not too much

- X-ray very small perhaps in old structures
 - not all programs use exactly the same references for bond lengths / angles
- NMR distances
 - if you only use upper bounds are you changing the distributions?
 - error in calibrating NOE → distance conversion
 - all distances will be too large / small
- NMR calculation of structures
 - older structures too compact or too expanded

Should not be much of a problem in modern data

Why is the Gaussian distribution sacred?

Random numbers (noise, errors)

- 0 1
- take uniform random numbers from 0 to 1
- add a few dozen together and get the sum
- repeat many times
- the sums are normal (Gaussian) distributed around ½

If I have a process which is genuinely random

best modelled with a Gaussian

Are errors always Gaussian? No – more later

- Errors from your growth estimations/spectrometer?
 - No, but good starting point

Atomic coordinates?

this lecture

X-ray - fitting structure to data

measured data

resolution

coordinate error and other error

Resolution

Do we know the error in X-ray coordinates?

no

Do we know the resolution?

- yes
 - property of crystal and reflections one measures

What does resolution r_{res} mean?

- distance r_{ij} between two points i, j
- If $r_{ij} < r_{res}$

I cannot resolve two points – they look like one object

X-ray resolution

Cannot say they get better

- old structures only get updated if resolution improves
- new (big) complexes are solved that could not be before (low resolution)

If I have 1.5 Å resolution are my coordinates only known to 1.5 Å? No

- I have many reflections many estimates of position
- I add much chemical information (bond lengths, angles)

What is the error really (simulated data)?

How would you calculate it?

Simulating error with resolution

coordinates with artificial error

Simulating error with resolution

repeat for values of x (1.8, 2.2, .. Å) repeat for many proteins

X-ray coordinate error

two different estimates of coordinate error – not important for us

For resolution near 1.5 to 2.0 Å

I have errors around 0.2 to 0.3 Å

Mobility

We have uncertainty – from resolution, incomplete data

We also have mobility

 no matter how good the data is the positions of atoms are not fixed

2ei5 backbone

B-factors

red – blue / mobile less mobile

surface more mobile / core fixed
 Formal meaning

$$B = 8 \pi^2 u^2$$

say u is the average displacement

if
$$B = 50 \text{ Å}^2$$
, typical displacement $\approx 0.8 \text{ Å}$

if
$$B = 20\text{Å}^2$$
, typical displacement $\approx 0.5 \text{ Å}$

units? Å²

there are different kinds of B-factors

Types of *B*-factors

How reliable / meaningful?

- the less certain the coordinates, the larger the B-factor (part of fitting – automatic – not done by hand)
- different programs give different values

is $8\pi^2u^2$ OK?

in one dimension?

ask me where Gaussian form comes from - not for Klausur - harmonic model

Anisotropic B-factors

How does an atom in a protein move?

- the middle of a protein is not very symmetric
- we could better describe mobility with more numbers

or

7

 χ

one number

two numbers

Big problem

 more numbers needs better, high-resolution data rather rare

B-factors one will meet

	data necessary	number of parameters	
every atom anisotropic	lots	lots	few
every atom isotropic	normal		most common
per-residue averaged	poor data	few	older structures

very mobile atoms

• B–factors: physical meaning for mobility of individual atoms

What else does one see?

Missing atoms?

 There is not enough electron density seen to place an atom

- Interpretation: the atoms are very mobile
- Usually only in loops, N- and C-termini

X-ray summary

- resolution is well-defined
- coordinate error is less well-defined
- resolution might be 1 $\frac{1}{2}$ Å, but coordinate error is much smaller
- mobility puts a lower limit on uncertainty

How does this compare with NMR?

NMR

How are NMR structures calculated?

- measure NOEs between H's convert to distances
 - maybe some angles, chemical shifts, residual dipolar couplings
- distances $\xrightarrow{\text{distance geometry}}$ coordinates

Distance information is

- not so accurate often only upper bounds
- limited to short (< 5 Å) distances
- there are many sets of coordinates that fit the data

Solve the distance geometry problem 100 times

send the best 20 or 30 structures to data bank

NMR coordinate error

- purple what you see when you open the file
- green 20 more "models"

27.11.2019 [28]

Meaning of models

Interpretation

- Each of the models in the data file agrees with the experimental information
- All of the models are reasonable solutions

Can we take the average?

what would the average look like?

What do average coordinates generally look like?

You cannot average coordinates

Using NMR coordinates

- average may have little meaning
- pick a model of your choice?
 - if the models are good OK
 - if the models are very different you have a problem

Can one talk about accuracy/certainty?

- If you think the models cover the allowed space
- what is the average distance compared to average coordinates? (root mean square)
- What does one expect?

NMR

- delete randomly
- calculate structures / compare to known coordinates

Certainty with NMR

- take set of solutions (20 to 50)
- fit to each other or average
- for each site (maybe C^{α}) calculate root means square difference
- gives estimate at each site of spread
- maybe average over all sites gives very rough idea of certainty
- Gaussian distribution assumption? Weak
- compare some features of NMR and X-ray...

Is NMR terrible?

Uncertainty is

- bigger than with X-ray
- less well estimated

There are problems with crystallography

- many proteins never crystallise
- some are difficult to phase
- a synchrotron is much more expensive than an NMR spectrometer

Distribution of errors

I say I have 2 Å resolution or 2 Å difference between structures or 0.2 Å uncertainty – what does it mean?

Can I use simple / classic error analysis?

$$Say y = x_1 - x_2$$

- then with errors $y = (x_1 \pm \epsilon_1) (x_2 \pm \epsilon_2)$
 - final error is $\epsilon = ((\epsilon_1)^2 + (\epsilon_2)^2)^{\frac{1}{2}}$

Distribution of errors

Can we apply the formula here?

- imagine ¹/₄ Å error on C and N
- final error on $d_{\it CN}$

$$\epsilon_{d_{CN}} = \left(\left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right)^{\frac{1}{2}} = \left(\frac{1}{8}\right)^{\frac{1}{2}} \approx 0.35\text{Å}$$

Silly. I know that CN bond length is 1.32 Å

What have I done wrong?

Intuitive – some distances are known and fixed

Formally

- error analysis only works with independent errors
- bonded C and N coordinates are highly correlated

Does simple error analysis ever apply?

uncertainty is more complicated

Mobility is not evenly distributed

- X-ray B-factors
 - very uneven
 - surface is most mobile
 - long sidechains are very mobile
- NMR
 - uncertainty also reflects mobility

Mistakes – not random, not systematic

X-ray

- usually in fitting atoms into density
- trace chain backwards
- asn and gln N and O have the same electron density

NMR

- misassignment of peaks
- finding errors?

finding errors

- a structure is solved again and looks different
- a structure is solved under slightly different conditions
- a very homologous structure is solved
- properties of structures
- are all bond lengths / angles OK?

sizes of chains

	X-ray	NMR	cryo-EM	SAXS
resolution	1½ - 2½ Å	n/a		
certainty	< 1 Å	from < Å to bad	> few Å	blobs
cost	\$\$\$\$	\$\$\$	\$\$\$	like for X- ray
you have protein how difficult is structure?	easier if similar to known structure	less reliance on known structure		
				27.11.2019 [42]