NMR vs X-ray, precision, certainty

Main methods
• X-ray crystallography and NMR

Others
• cryo-electron microscopy (cryo EM)
• small-angle X-ray scattering (SAXS)
• neutron diffraction

• Dominated by proteins, but most comments apply to nucleotides
Techniques for structures

Mostly X-ray

- X-ray
- NMR
- cryo EM
- neutron diffraction
- ...
Structure solving techniques

Can you combine methods?
- X-ray + NMR - rare
- X-ray + cryo-EM – more common
- low and high-resolution X-ray – sometimes

Why focus on X-ray and NMR?
- emphasis in this course on atomistic detail
- still most important
cryo-EM and SAXS

Why will I not speak about cryo-EM?
• fashionable, but look at resolution

• distance between two residues \((C_i^\alpha, C_{i+1}^\alpha) = 3.8 \, \text{Å} \)
• cryo-EM cannot tell which residue is which

• getting better every year

• not quite atomic detail

SAXS – even less detail

SAXS = small angle X-ray scattering
Genauigkeit

Why do I care about accuracy?

• What is a bond length? (1.07, 1.54, 1.32 .. Å) easy
• How does the energy change as I move an atom?
• I want to understand protein-ligand binding
 • where is my ligand?
 • with which residues does it interact?
• can I predict the effect of a mutation / substitution?

A line from the protein data bank

ATOM 41 N ASP A 3 35.790 11.466 -9.466 1.00 16.15

\[x = 35.790, \ y = 11.466 \ z = \ldots \quad \text{total fantasy (10}^{-13} \text{ m)} \]
Error definitions

• Accuracy, precision – not good words
• Certainty / uncertainty / confidence – more in statistics
• Resolution – nice word – defined later

What do I mean by error? \(x \pm \varepsilon \)
• should say 90% confidence, one \(\sigma \), 75 % quartiles, ..

How do I interpret this?
• I imagine a Gaussian (normal) distribution
accuracy / precision

basically bad words
- do not use Wikipedia + Übersetzung schwierig

\begin{itemize}
\item small error
\item systematic error
\item large random error
\end{itemize}

repetitions do not help
if you know it, you would correct for it

repetitions increase certainty
usually modelled with a gaussian
Systematic Errors – are they relevant?

Hopefully not too much

- X-ray – very small – perhaps in old structures
 - not all programs use exactly the same references for bond lengths / angles
- NMR – distances
 - if you only use upper bounds are you changing the distributions?
 - error in calibrating NOE → distance conversion
 - all distances will be too large / small
- NMR – calculation of structures
 - older structures – too compact or too expanded

Should not be much of a problem in modern data
Why is the Gaussian distribution sacred?

Random numbers (noise, errors)
- take uniform random numbers from 0 to 1
- add a few dozen together and get the sum
- repeat many times
- the sums are normal (Gaussian) distributed around $\frac{1}{2}$

If I have a process which is genuinely random
- best modelled with a Gaussian

Are errors always Gaussian? No – more later
- Errors from your growth estimations/spectrometer?
 - No, but good starting point

Atomic coordinates?
- this lecture
X-ray - fitting structure to data

measured data

resolution

electron density

coordinate error and other error
Resolution

Do we know the error in X-ray coordinates?
• no

Do we know the resolution?
• yes
 • property of crystal and reflections one measures

What does resolution r_{res} mean?
• distance r_{ij} between two points i, j
• If $r_{ij} < r_{\text{res}}$
 I cannot resolve two points – they look like one object
are they getting better?

Resolution

1.4×10^5

structures

75% of data

$1 \frac{3}{4} - 2 \frac{1}{2} \text{ Å}$
\[\mu = 2.1 \text{ Å} \]
\[\text{median} = 2.0 \text{ Å} \]

2014 - 2016
structures since 2017
X-ray resolution

Cannot say they get better
• old structures only get updated if resolution improves
• new (big) complexes are solved that could not be before (low resolution)

If I have 1.5 Å resolution are my coordinates only known to 1.5 Å ? No
• I have many reflections – many estimates of position
• I add much chemical information (bond lengths, angles)

What is the error really (simulated data) ?
• How would you calculate it ?
Simulating error with resolution

- protein coordinates
- calculate perfect reflections
- perfect (fake/synthetic) data
- throw away reflections < x Å
- partial data
- calculate density
- electron density
- calculate coordinates
- coordinates with artificial error
- measure error
- coordinates
Simulating error with resolution

repeat for values of x (1.8, 2.2, .. Å)
repeat for many proteins

measure error

throw away reflections $< x$ Å
For resolution near 1.5 to 2.0 Å
- I have errors around 0.2 to 0.3 Å

Mobility

We have uncertainty – from resolution, incomplete data

We also have mobility

• no matter how good the data is
 the positions of atoms are not fixed
B-Factors

2ei5 all atoms

2ei5 backbone
B-factors

red – blue / mobile less mobile
• surface more mobile / core fixed

Formal meaning

\[B = 8 \pi^2 u^2 \]

say \(u \) is the average displacement

if \(B = 50 \text{ Å}^2 \), typical displacement \(\approx 0.8 \text{ Å} \)
if \(B = 20\text{Å}^2 \), typical displacement \(\approx 0.5 \text{ Å} \)

units? \(\text{Å}^2 \)

• there are different kinds of \(B \)-factors
Types of B-factors

How reliable / meaningful?
- the less certain the coordinates, the larger the B-factor (part of fitting – automatic – not done by hand)
- different programs give different values

Is $8\pi^2 u^2$ OK?
- in one dimension?

ask me where Gaussian form comes from - not for Klausur – harmonic model
Anisotropic B-factors

How does an atom in a protein move?

- The middle of a protein is not very symmetric.
- We could better describe mobility with more numbers.

Big problem
- More numbers need better, high-resolution data rather rare.
B-factors one will meet

<table>
<thead>
<tr>
<th></th>
<th>data necessary</th>
<th>number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>every atom anisotropic</td>
<td>lots</td>
<td>lots</td>
</tr>
<tr>
<td>every atom isotropic</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>per-residue averaged</td>
<td>poor data</td>
<td>few</td>
</tr>
</tbody>
</table>
very mobile atoms

- B-factors: physical meaning for mobility of individual atoms
- What else does one see?
 - Missing atoms?
- There is not enough electron density seen to place an atom
- Interpretation: the atoms are very mobile
- Usually only in loops, N- and C-termini
X-ray summary

- resolution is well-defined
- coordinate error is less well-defined
- resolution might be $1 \frac{1}{2} \text{Å}$, but coordinate error is much smaller
- mobility puts a lower limit on uncertainty

How does this compare with NMR?
NMR

How are NMR structures calculated?
• measure NOEs between H's – convert to distances
 • maybe some angles, chemical shifts, residual dipolar couplings
• distances \(\rightarrow \) coordinates

Distance information is
• not so accurate – often only upper bounds
• limited to short (< 5 Å) distances
• there are many sets of coordinates that fit the data

Solve the distance geometry problem 100 times
• send the best 20 or 30 structures to data bank
NMR coordinate error

• purple – what you see when you open the file

• green – 20 more “models”
more drastic example

- blue first model
- gold/brown : all models

- most of the coordinates not really determined
- angle of first helix not really known
Meaning of models

Interpretation
• Each of the models in the data file agrees with the experimental information
• All of the models are reasonable solutions

Can we take the average?
• What would the average look like?

What do average coordinates generally look like?
You cannot average coordinates

coordinates with normal bond lengths / angles

averaged (A, B) coordinates
silly bonds, angles
Using NMR coordinates

- average may have little meaning
- pick a model of your choice?
 - if the models are good – OK
 - if the models are very different you have a problem

Can one talk about accuracy/certainty?
- If you think the models cover the allowed space
- what is the average distance compared to average coordinates? (root mean square)

- What does one expect?
• take coordinates
• generate possible distances
• delete randomly
• calculate structures / compare to known coordinates

Certainty with NMR

• take set of solutions (20 to 50)
• fit to each other or average
• for each site (maybe Cα) calculate root means square difference
• gives estimate at each site of spread

• maybe average over all sites – gives very rough idea of certainty

• Gaussian distribution assumption? Weak

• compare some features of NMR and X-ray..
Is NMR terrible?

Uncertainty is
• bigger than with X-ray
• less well estimated

There are problems with crystallography
• many proteins never crystallise
• some are difficult to phase
• a synchrotron is much more expensive than an NMR spectrometer
Distribution of errors

I say I have 2 Å resolution or 2 Å difference between structures or 0.2 Å uncertainty – what does it mean?

Can I use simple / classic error analysis?

Say \(y = x_1 - x_2 \)
- then with errors \(y = (x_1 \pm \epsilon_1) - (x_2 \pm \epsilon_2) \)
 - final error is \(\epsilon = \left((\epsilon_1)^2 + (\epsilon_2)^2 \right)^{\frac{1}{2}} \)
Distribution of errors

Can we apply the formula here?

- Imagine $\frac{1}{4}$ Å error on C and N
- Final error on d_{CN}

$$
\epsilon_{d_{CN}} = \left(\left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right)^{\frac{1}{2}} = \left(\frac{1}{8} \right)^{\frac{1}{2}} \approx 0.35 \text{Å}
$$

Silly. I know that CN bond length is 1.32 Å

What have I done wrong?
Intuitive – some distances are known and fixed

Formally

- error analysis only works with independent errors
- bonded C and N coordinates are highly correlated

Does simple error analysis ever apply?

Here yes but probably not so interesting

Here yes and probably important

27.11.2019
uncertainty is more complicated

Mobility is not evenly distributed
 • X-ray B-factors
 • very uneven
 • surface is most mobile
 • long sidechains are very mobile
 • NMR
 • uncertainty also reflects mobility
Mistakes – not random, not systematic

X-ray
• usually in fitting atoms into density
• trace chain backwards
• asn and gln – N and O have the same electron density

NMR
• misassignment of peaks
• finding errors?
finding errors

• a structure is solved again and looks different
• a structure is solved under slightly different conditions
• a very homologous structure is solved

• properties of structures
• are all bond lengths / angles OK?
sizes of chains

NMR
lots of peptides
not many > 200

X-ray
<table>
<thead>
<tr>
<th></th>
<th>X-ray</th>
<th>NMR</th>
<th>cryo-EM</th>
<th>SAXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>$1\frac{1}{2}$ - $2\frac{1}{2}$ Å</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>certainty</td>
<td>< 1 Å</td>
<td>from < Å</td>
<td>> few Å</td>
<td>blobs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost</td>
<td>$$$$$$</td>
<td>$$$$</td>
<td>$$$$</td>
<td>like for X-ray</td>
</tr>
<tr>
<td>you have protein..</td>
<td>easier if</td>
<td>less</td>
<td>less</td>
<td></td>
</tr>
<tr>
<td>how difficult is</td>
<td>similar to</td>
<td>less</td>
<td>reliance on</td>
<td></td>
</tr>
<tr>
<td>structure?</td>
<td>known</td>
<td>known</td>
<td>known</td>
<td></td>
</tr>
</tbody>
</table>