NMR (Nuclear Magnetic Resonance Spectroscopy)

Literature / background (already in Stine)

Current standing
- ≈ 10% of current structures solved by NMR (12 747 structures, 11 432 proteins)
- about 1/4 of smaller structures (<100 residues)
How many structures by NMR?

![Graph showing the number of NMR structures over years from 1990 to 2015. The x-axis represents the year, and the y-axis represents the number of structures. The number of structures increases significantly around the year 2005.]
sizes of NMR structures in protein data bank

- 60 – 110 residues (lots)
- 110 – 150 not so many
What is coming

Background to NMR – chemistry

Calculating structures
• distance geometry
• problems with structures

For chemists: no
• chemical shifts
• 2D and higher
• residual dipole coupling, spin labels
• ...
History

Younger field than X-ray
 • 1 ½ Nobel prizes (Ernst, Wüthrich)

First real protein structure about 1985 or 1986

NMR from our viewpoint

A way to get structures - our focus
Can provide information on
 • dynamics, stability
 • interactions (other proteins, small molecules)
Overview – how we get coordinates

- protein in solution
- record spectra
- assign peaks to ^1H, ^{13}C, ^{15}N nuclei
- record some more spectra
 - distance information (mostly)
 - some internal angles
- reconstruct structure
Nuclei have spin

- have a charge and act like magnets
- put them in a field and they will align with it

- now apply a magnetic field
 - they "precess" around the field
 - two possible states

\[\nu \]

\(B_0 \) is applied field
\(\nu \) speed of rotation (many MHz / \(10^6 \) Hz)
Do nuclei like fighting the field?

Is a nucleus happy facing the wrong way?
- what if we push it the wrong way?
 - wants to get to low energy state – emits a photon
What NMR records

- Turn on a field
- Put in energy
- Let them relax

Some nuclei not doing much

Applied field some align

\[B_0 \]
Important nuclei (spin $\frac{1}{2}$)

<table>
<thead>
<tr>
<th>nucleus</th>
<th>sensitivity</th>
<th>abundance</th>
<th>$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>1</td>
<td>natural</td>
<td>cheap</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1.6×10^{-2}</td>
<td>1%</td>
<td>$$$</td>
</tr>
<tr>
<td>^{15}N</td>
<td>10^{-3}</td>
<td>0.4%</td>
<td>$$$</td>
</tr>
<tr>
<td>^{31}P</td>
<td>7×10^{-2}</td>
<td>natural</td>
<td>cheap</td>
</tr>
</tbody>
</table>

Natural isotopes are ^{12}C and ^{14}N not ^{13}C or ^{15}N

- if you want to use C or N – expensive labelling

Proteins
- ^1H, ^{13}C, ^{15}N
NMR for us

You get a spectrum (1D, 2D, ..)
- Where are the peaks?
 - For chemists – not this course

We care about structural information
- This nucleus affects that nucleus
 - (field splitting, relaxation, ...)
- Can be related back to structure
To calculate structures?

1. distance information

2. dihedral / torsion angle information
Distance information / the NOE

Most important (NOE = nuclear overhauser effect)
- an effect which depends on how close in space nuclei are
- \(\text{NOE} \propto r^{-6} \)
- usually only up to about 5 - 6 Å

Story
- two spins' dipoles interact
- cross relaxation phenomenon
 - red relaxing (jumping to lower energy) affects black
Other structural information

- NOE – information about short (< 5 or 6 Å) distances
- there is more – angles
 - mainly J coupling

Amide NH to H^α coupling

ϕ
\[\text{cis} < 6 - 7 \text{ Hz} \]
\[\text{trans} \sim 10 \text{ Hz} \]
$f_{H^\alpha\text{NH}}$
$^3J_{\text{HN} \alpha}$ coupling

formalised as

$$^3J_{\text{H} \alpha \text{NH}} = 6.4 \cos^2 \varphi - 1.4 \cos \varphi + 1.9$$

Problems...

Where do 6.4, 1.4, 1.9 come from?

Do not learn for Klausur

Amide NH to H$^\alpha$ coupling

- can help distinguish α from β
- not always seen (exchange / motion)
- NH not always present
- other angles?
 - other vicinal protons
- C$^\alpha$ to C$^\beta$
Problems with J-coupling

We have a formula

$$3J_{\text{HaNH}} = 6.4 \cos^2 \varphi - 1.4 \cos \varphi + 1.9$$

measure J, solve for φ

Most of the time there is more than one solution (φ)

- use only large J

Dynamics and errors

- look near -90°
Practical NMR

We have some basic methods

Real NMR
• more techniques
 • 2D and more
 • identifying specific kinds of atom
 • spreading peaks out
Information summary

<table>
<thead>
<tr>
<th>phenomenon</th>
<th>assignments</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical shift</td>
<td>important</td>
<td>not much used</td>
</tr>
<tr>
<td>spin-spin (J) coupling</td>
<td>important</td>
<td>torsion angles</td>
</tr>
<tr>
<td>NOE</td>
<td>important</td>
<td>distances</td>
</tr>
</tbody>
</table>

More spectroscopy
- filtering according to chemistry, atom types
- n-dimensional methods

Structural information
- labels for broadening / shifting peaks
- orientation of bonds to reference ..
Available information

- distances
 - short (< 5 to 6 Å)
 - incomplete
- some dihedral / torsion angles
- does this define a structure?
 - strictly no

Coming

- distances in 2D and 3D
- Distance geometry – two versions
Determining distances (ideal)

- 2 points 1 distance
- 3 points 3 distances...
 - think of $3N_{\text{atom}}$ distances
 - remember $N_{\text{atom}} \approx 10$ or $20 \ N_{\text{res}}$
Think in terms of triangles ...

• $d_{ik} < 6 \text{ Å}, \ d_{jk} < 6 \text{ Å}$
• where is k?

A few more distances...

• more and more distances are useful
Impossible distances

No overlap?
- experimental error
- nowhere for k to go

Real data

Protein of N_{res} residues, you might have 5 or 10 N_{res} distances
- want more like $3N_{\text{atom}}$ ($30 - 60$ N_{res}) distances if perfect
 - needs much more data...
 - lots of chemical data
An analytical solution?

Is there some formula which will give you structures from distances?

• Could I say $a^2 = 2bc \cos \alpha$ or $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \cdots$?

There is not enough experimental data
• can be fixed partially (coming soon...)

Serious problems
• you do not know a, b, c, α, \ldots exactly – you cannot get other distances or angles
 • how would you deal with a range (3 – 5 Å)?
• even if you knew many distances almost exactly
 • numerical errors accumulate (badly)
Mission

- gather all experimental data
- mix in chemical data
- make all distance information as tight as possible
- put an upper bound on the distance between every pair of points
- put a lower bound on every distance (less important)
- somehow generate coordinates
- start with toys and triangles
Structures from distance information

Start in two dimensions..

Ein freundliches Dreieck

\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 16 \]

- fix \(i \), put \(j \) on \(x \)-axis and make coordinates
- solve analytically
Underdetermined data

\[d_{ij} = 11 \]
\[d_{ik} = 13 \]
\[12 < d_{jk} < 20 \]

More like NMR data

Unique solution?
No
Impossible data

distance too big
\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 25 \]

distance too small
\[d_{ij} = 11 \quad d_{ik} = 13 \quad d_{jk} = 1 \]

no 3D structure
Gathering data

• add in chemistry
• use to get more
 • mix chemistry + measurements
• what comes easily from chemistry?
Gather as much data as possible

Simple, geometric information
- bonds – standard
- angles – standard
- simple distances from bond angles
- dihedral / torsion angles
 \[d_{hk}^2 = (d_{ij} - d_{hi} \cos \theta_{hij} - d_{jk} \cos \theta_{ijk})^2 + (d_{hi} \sin \theta_{hij} - d_{jk} \sin \theta_{ijk} \cos \tau_{hijk})^2 \]
 + \(d_{jk} \sin \tau_{hijk} \)^2

set \(\tau = 0 \)
- minimum
\(\tau = \pi \)
- maximum
How to get more distance information

• impose some distance limits generally
• intuitively
 • stretch out a protein and there is a limit to length

Can one formalise this?
More general / triangle inequality

What limits can be worked out?

upper bound
\[d_{jk} \leq d_{ij} + d_{ik} \]

lower bound
\[d_{jk} \geq |d_{ij} - d_{ik}| \]
Where to use triangle inequality

One could avoid some ugly trigonometry

more general

implied 6 or 7 Å
Most general triangle bound inequality

Triangle bound should be satisfied by any three points
- chemists
 - triangle bound smoothing

- informatik
 - all points shortest path problem
All points shortest path (Floyd)

A - B - C - D - E

A
B
C
D
E

A 4 3 5 3 10
B 3 5 max 5 max
C 2 max 10 2 3
D 3 max max max max
E max max max max max
for (k = 0; k < n_last; k++)
 for (i = 0; i < n_last; i++)
 for (j = 0; j < n_last; j++)
 if $r_{ij} > r_{ik} + r_{jk}$
 $r_{ij} := r_{ik} + r_{jk}$

Running time
$O(n^3)$
Distance matrix so far

We can build a distance matrix of upper limits
• consistent with all bonds and angles and other information

Can do the same for lower bounds
• every pair of atoms
 • invent some lower bound (atomic radii)

Does this define a structure?

Almost certainly not
• still no way to get to a 3D model
From distances to coordinates

How would you build coordinates from distances?
- stepwise?
 - error prone, errors add

- history
 - early 80's
 - methods which are tolerant of errors
 - metric matrix method
Metric matrix method

- get best upper bounds
- get best lower bounds
 - guess distances between
 → trial distance matrix
- convert to centre of mass matrix (metric matrix)
- magic conversion to coordinates
 - if metric matrix has three positive eigenvalues
 - error free coordinates
- real coordinates
- lots of errors
- initial coordinates not healthy
- refine
Metric matrix method

- get best lower bounds + upper bounds
 - guess distances between
 \[\rightarrow\] trial distance matrix

- repeat \(n\) times
 - get \(n\) guesses
- some OK, some bad
- repeat until you have 20 or 100 structures you like

- OK = agrees with experimental data + chemically OK
Chirality

2D version
- can *not* be rotated on to each other
- can not be distinguished by distances

3D
- chirality is random
- problem ? no
 - flip all coordinates and check

Local chirality ...
Overall / Local chirality

- some points correct
- some wrong
- If you invert a site, will damage other parts of structure
The Optimisation problem

Find the coordinates that put atoms so they agree with experimental data

- cost c is $\sum_i (r_i - r_i^{measured})^2$ for each measured distance r

Maybe we do not work directly with atoms or coordinates $\{\vec{r}\}$
work with angles
Distances and angles

One angle is easy

longer distances depend on several angles
Distances and angles

Each angle affects many distances

What does one know?
• simple optimisation will not work
Optimisation Strategy

Start
 • concentrate on distances with few angles in between
 • shorter distances become correct

Add in more distances
 • re-optimise

Add in more distances
 • ...

Variable target function

Work with torsion angles

1st step
2nd step
3rd step

ideas from Braun and Gō, 1980s
Stepwise variable target function method

Collect experimental data

<table>
<thead>
<tr>
<th>distance in sequence</th>
<th>residue 1</th>
<th>atom 1</th>
<th>residue 2</th>
<th>atom 2</th>
<th>distance in space (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>(\text{H}^\alpha)</td>
<td>6</td>
<td>(\text{H}^N)</td>
<td>4.0</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>(\text{H}^\alpha)</td>
<td>8</td>
<td>(\text{H}^\gamma)</td>
<td>4.4</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>(\text{H}^\alpha)</td>
<td>82</td>
<td>(\text{H}^N)</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(\text{H}^\alpha)</td>
<td>5</td>
<td>(\text{H}^\gamma)</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>(\text{H}^\beta)</td>
<td>8</td>
<td>(\text{H}^\gamma)</td>
<td>3.8</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>(\text{H}^\alpha)</td>
<td>3</td>
<td>(\text{H}^N)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Sort according to distance in sequence
Stepwise variable target function method

<table>
<thead>
<tr>
<th>distance in sequence</th>
<th>residue</th>
<th>atom</th>
<th>residue</th>
<th>atom</th>
<th>distance in space (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>H^α</td>
<td>8</td>
<td>H^γ</td>
<td>4.4</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>H^α</td>
<td>3</td>
<td>H^N</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>H^α</td>
<td>6</td>
<td>H^N</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>H^β</td>
<td>8</td>
<td>H^γ</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>H^α</td>
<td>5</td>
<td>H^γ</td>
<td>5.0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>H^α</td>
<td>82</td>
<td>H^N</td>
<td>4.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Stepwise variable target function method

<table>
<thead>
<tr>
<th>distance in sequence</th>
<th>residue atom</th>
<th>residue atom</th>
<th>distance in space (Å)</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>…</th>
<th>later</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>H<sub>α</sub></td>
<td>8</td>
<td>H<sub>γ</sub></td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>H<sub>α</sub></td>
<td>3</td>
<td>H<sub>N</sub></td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>H<sub>α</sub></td>
<td>6</td>
<td>H<sub>N</sub></td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>H<sub>β</sub></td>
<td>8</td>
<td>H<sub>γ</sub></td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>H<sub>α</sub></td>
<td>5</td>
<td>H<sub>γ</sub></td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>H<sub>α</sub></td>
<td>82</td>
<td>H<sub>N</sub></td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td></td>
<td></td>
<td>…</td>
</tr>
</tbody>
</table>
Hope..

- **1st step**
 - Global optimum

- **Later step**
 - Full surface

- **Conformations**

```plaintext
error
```

- **Global optimum**

```plaintext
error
```

- **Full surface**

```plaintext
error
```
Variable target function vs metric matrix

Metric matrix *versus* variable target function

- proponents of both

variable target function probably more popular

- no problems with chirality
Real implementations of distance geometry

• not small programs
• Input?
 • list of protein sequence
 • set of distances
• most of code
 • libraries of standard amino acids
 • code to do geometry and work with standard geometries
• other information
 • angle restraints
 • convert to distances for metric matrix
 • natural for variable target function
Output from programs

Structure impossible?
• program dies or
• best possible solution

Structure not determined?
• set of possible conformations (10 to 100)

example 1sm7
Lots of models in a PDB file

• big difference compared to X-ray coordinates
• typical
 • ends (C- and N-termini) badly defined
 • loops poorly defined
• spectroscopists say this reflects mobility
• problems with many models
 • difficult to work with
 • arbitrary which to select for calculations
 • averaging usually not a good idea
• Is this the absolute truth? No.
 • number of models arbitrary
 • different methods (programs /details) give different results
Finished with making coordinates?

- structures may not be well defined
- can they be improved? probably
 - restrained molecular dynamics (more next semester)
- normal MD \(E_{phys}(\vec{r}) = \text{bonds} + \text{angles} + \text{electrostatics} \) ...

- restrained MD \(E_{total}(\vec{r}) = E_{phys}(\vec{r}) + E_{restr}(\vec{r}) \)

- and... \(E_{restr} = \sum_i k_i (r_i^{\text{struct}} - r_i^{\text{measured}})^2 \)

- where \(i \) refers to the distance restraint
Mission - to minimise \(E_{total} \)
- result?
- structures
 - agree with restraints + low energy
What else can one do with NMR?

NMR sensitive to dynamics
- is this part of the protein mobile?

Interactions
- add small molecule – which parts of spectrum change?

Still more structural information
- residual dipolar coupling
- spin labels
Summary

- What information does one have?
- Is it enough? Is it consistent?
- Two methods to generate structures
- Differences in handling chirality