Comparative / Homology Modelling

You have a sequence

.. AADEFGHIKHFEDA.. but no structure

• no crystals, cannot phase, too big for NMR, in a hurry

You have your sequence and want to

- find residues that are far from active site and in a loop
- guess which residues in your sequence are involved in chemistry
- ... say what certain residues do
 - are they in active site ? Surface ? Buried ?

Modelling

...AADEFGHIKH-GED... your sequence

- do a blast search
- find a related sequence in PDB has a structure

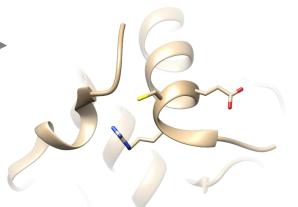
...AQDEF-HIKKGFED

found in PDB

put your sequence on to this structure
literally ...

4b49

Modelling


. L C D . . original residues

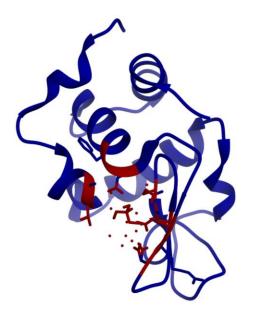
just replace with residues from your sequence

. F C E . .

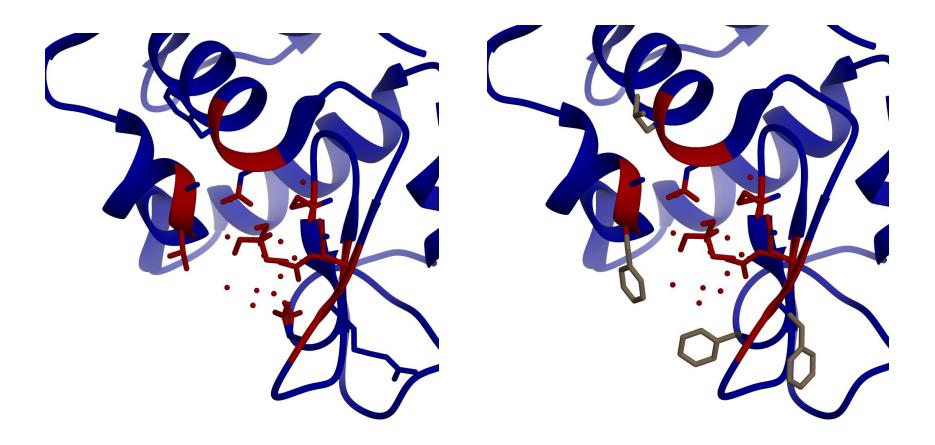
replace sidechains

original from PDB

backbone with your sidechains


Using model

with substrate



...AADEFGHIKH-GED...

who is near substrate?

predictions as to active site

Accuracy

You now have coordinates for your sequence

- how accurate ?
- does it matter ?

May not need to be accurate

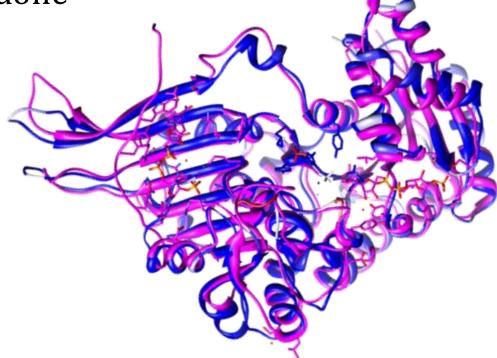
- phasing (X-ray crystallography)
- guiding mutagenesis

May or may not be good enough

docking

Most basic rule

Guiding belief


- similar sequence gives similar structure
 - evolution
 - chemistry

Most important

• closer the sequence is to template – better the model

Reasonable expectations

- two enzymes (G6Pdh) easy to find homology
- could one have been modelled, knowing the other?
- knowing the structures below, this might be the limit of what could be done

Overall modelling protocol

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure

Finding a template / parent

How unique is my sequence?

- human haemoglobin,
 - you would find horse, pig, and 10^3 globin structures
- enzyme from a virus
 - it may have no obvious homologues has evolved too far

high sequence identity	low sequence identity	very low
(>~20-25 %)	(<~20-25 %)	
blast, fasta, anything	psi-blast, HMMs	psi-blast,
		optimism

Why so vague ?

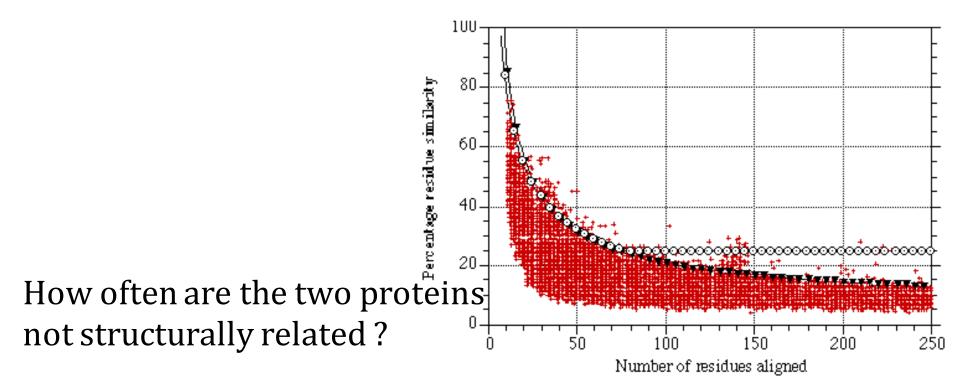
Template reliability

Old rule

- < 20 % not similar
- > 25 % similar
- otherwise (twilight zone)

Not a good rule

Template reliability

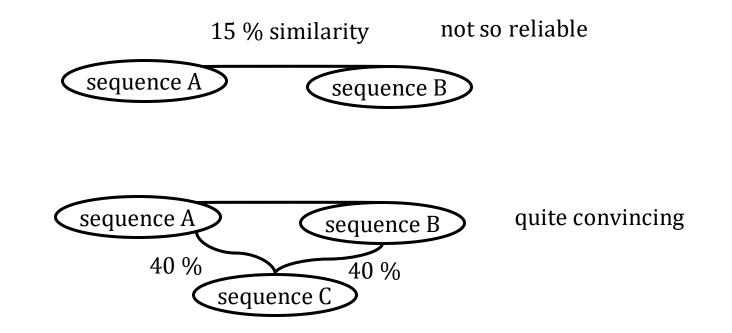

Why is this not enough?

Consider random mixture of amino acids

- add bias of composition (some amino acids are rare)
- compare a lot of proteins and say
 - pairs have 15 % similarity (average)
- we see a pair of 20 % similarity for 50 residues
 - is it significant?
- we see a pair of 20 % similarity for 600 residues
 - more convincing

Quantifying importance of similarity length

Reminder.. We know the size of an alignment


but more to deciding if similarity is significant

Rost, B. Prot. Eng. 12,85-94 (1999)

Transitive relations

How significant is the similarity between two proteins?

does not only depend on the two proteins

sequence C – called transitive relation

Summarise

- Sequence identity (sequence to template) is most important
- It is not enough to say 20 25 % similarity
 - depends on length of alignment
 - depends on common relations (transitive)

Sequence alignment

We have picked a template for our sequence now...

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- we need an alignment
- difference compared to database searches ?
 - not scanning a database (10⁷ sequences)
 - we can do best possible alignment time is not important

Careful alignments

Computer time not a problem - use

- most expensive alignment algorithm, could be one of
 - Needleman-Wunsch/Smith-Waterman family
 - multiple sequence alignment with related sequences for template and query sequence

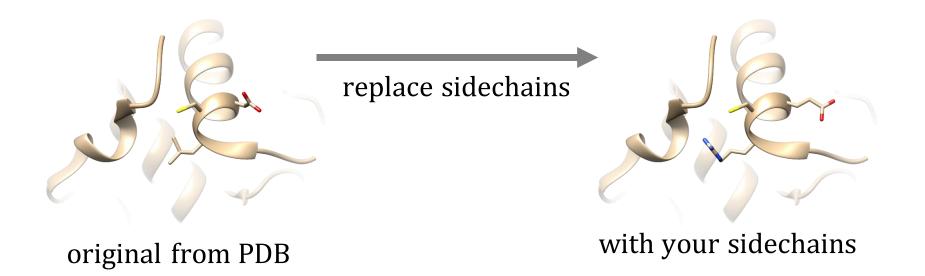
How important?

Alignment errors

ANDREW

ANQEW

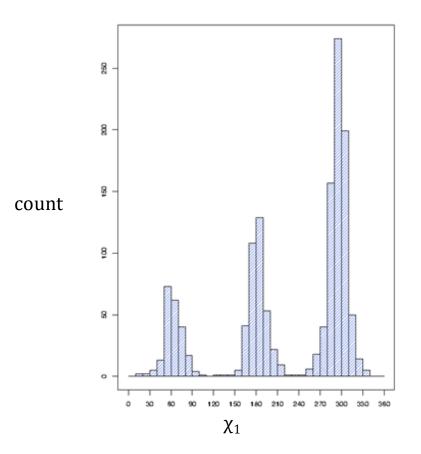
two reasonable alignments


ANDREWorANDREWANQ-EWorAN-QEW

difference?

• from C_i^{α} to C_{i+1}^{α} almost 4 Å

Sidechains - where to put them?


- new sidechains ? need coordinates
- should you worry ?
 - No surface residues maybe not they rotate
 - Yes residues with contacts / interactions

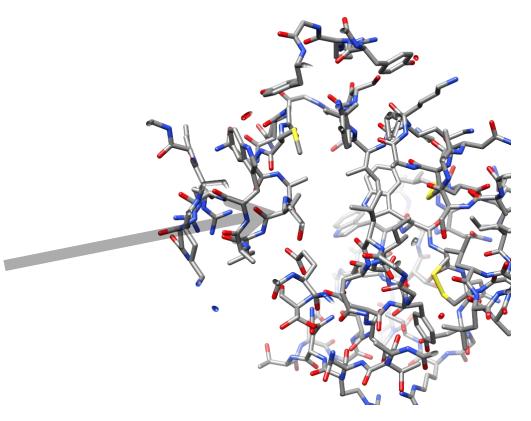
Rotamers for sidechains

Approximation / simplification

• sidechain coordinates are taken from likely rotamers

Dunbrack Jr, R.L., Curr. Opin. Struct. Biol. 12, 431-440 (2002)

Example - replace ala with trp


Rotamers

• concede that you are happy with discretization

Trp rotamers

- 3 rotamers at χ_1
- 3 rotamers at χ_2

What do they look like?

9 possibilities

- many are silly
- have to be checked
- how difficult?
- are the neighbours known?

- if we have 9 possibilities for a neighbour
 - already 9 × 9

Sidechain placement

If sidechain in your sequence is the same as template

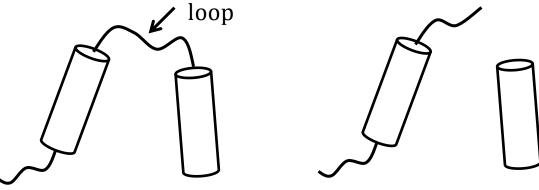
• use template coordinates

New sidechains

- say m_i possibilities at each site i
- make lists of possibilities at each site
- try to find biggest network of rotamers which compatible with each other
- use simple scoring scheme (clashes)

How bad is the calculation?

rotamer search


- at each site *i* we have m_i possibilities
- could say $\Pi_i m_i$ possibilities $(m_1 \cdot m_2 \cdot)$ or just m^n
- most sidechains have only a half a dozen neighbours
- usually minutes of cpu time (not days)

Are you finished?

- maybe
- can do a energy calculation to make coordinates nicer

Broken main chain

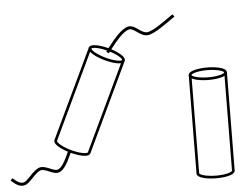
Typical situation ANDR-WQANDRKWSANDRWWC parent ANDREW---DRKWS--DRWWC model our model...

Basic problem...

- pieces of unknown structure
- endpoints relatively fixed
- should be joined

Loop modelling

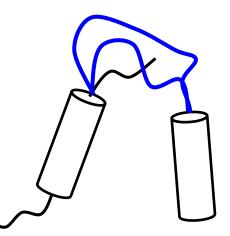
Loop problem


- do not want to disturb regular secondary structure
 - more likely to be correct
- ends of loop relatively well known
- composition (sequence) of loop

The problem specifically:

- find an arrangement of backbone and sidechains which
 - is geometrically possible
 - low energy

Possibilities

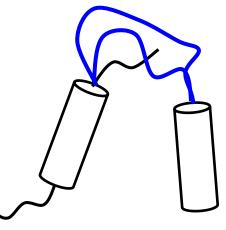

- distance geometry
- database search
- brute force

Methods for loops

Distance geometry

- we know
 - end points and distances
 - sequence of loop
 - all bond lengths and angles

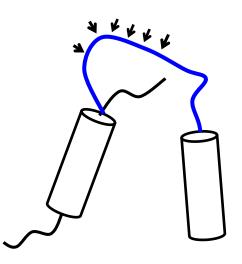
• use distance geometry to generate plausible arrangements


Results?

- arrangement of atoms with
 - correct covalent geometry
 - no atoms on top of each other (set by minimum distances)
- little consideration of torsion angles

Loops Database searching

Database searching


- imagine we have a 9 residue loop
- take protein data bank
- collect coordinates of all 9-residue loops
- insert those with correct end to end distance
- refinement...
 - insert those with almost correct distance &
 - similar sequence to loop residues

Loops – brute force

Desperation / brute force for small number of residues

- divide angles into pieces (maybe 30°), 360/30 = 12
- test every combination (joining ends, energy)
- called "grid search"
- How many angles ?
- per residue
 - fix ω
 - phi *φ*, psi *ψ* 12×12=144
- possibilities = $144^{N_{res}}$

Quality

- energies
- geometries
- statistics of backbones / sidechains

Remember energy/geometry/statistics are related

Real world

Recipe on these slides rather simple

- usually many models generated and checked
- multiple templates
- multiple templates simultaneously?
- interaction with experiment (predictions tested)
- automatic methods are very good

What does one achieve?

```
Folklore – history - testing
```

Very easy cases ?

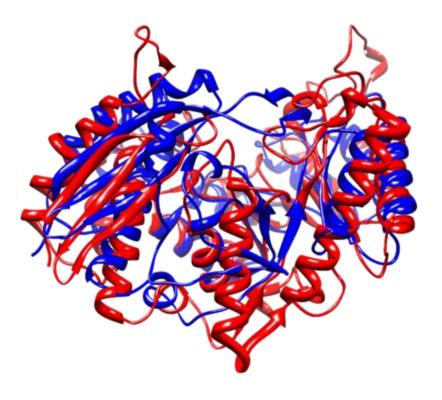
• not much change from parent

Very difficult?

lots of errors

An Example

2mnr and 4enl


- would be a typical modelling target
- in real world
 - alignment would not be perfect
 - loops may be quite wrong

The sequence alignment

Seq ID 25.1 % (81 / 323) in 373 total including gaps : 1 : 2 : 3 : 4 : 5 0 : 0 : 0 : 0 : 0
sktyavlqlgngghafaaylalkgqsvlawdidaqrikeiqdrgaiiaegpg svehimrdv-nggwa-mryihangaslfflavyihifrglyygsykapreitwivgmviy 0 : 0 : 1 : 1 : 1 : 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
lagtahpdlltsdiglavkdadvilivvpaihhasiaaniasyisegqliilnpg llmmgtafmgyvlpwgqmsfwgatvitglfgaipgigpsiqawllggpavdnatlnrf 1 : 1 : 1 : 1 : 1 4 : 5 : 6 : 7 : 8 : 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
fslhyllpf-viaalvalhiwafhttgnnnptgvevrrtskadaekdtlpfwpyfvikdl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
waleqigsvlpqyvavenvlhtsltnv-navm-hplptllnaarcesgtpfqyyl- fala-lvllgffavvaympnylghpdnyvqanplstpahivpewyflpfyailrafaa 2 : 2 : 2 : 3 : 3 : 2 : 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-egitpsv-gslaekvdaeriaiakafdlnvpsvcewypatiyeavqgnpayrgiagpin dvwvvilvdgltfgivdakffgviamfga-i-avmalapw-ldtskvrsgayrpkf 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
lntryffedvstglvpiselgravnvptplidavldiisslidtdfrkegrtlekigisg rmwfwflvldfvvltwvg-ampt-eypydwis-liastywfay-flvilpiig
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 : 4 :
U: ltaagirsave atekpepipasie
: 4 : 2 · 0

2mnr and 4enl example

 sequence alignment not the same as alignment from structures

Summarise für Klausur

Ideas of sequence similarity

Technical issues

- loops
- sidechain placement

Why not to build a model

Why do people like models?

- Here is a picture of my protein
- Is it necessary ? Not always

```
aacsdefgh…
aactde-gh…
aqctdewg…
gacsdeggh…
```

known structure some related sequences your sequence more related sequences

```
your question
```

...

- is your sequence the same kind of enzyme?
- has the active site changed ?

if ser 4 is part of active site in known structure

- you can say thr 4 in your sequence is the corresponding residue
- coordinates are not necessary information is in sequence