Protein Design

- Why?
- Experiments
- Computational Problems
- Monte Carlo, pruning methods
- Energies, energy differences (ΔE , ΔG)
 - why energies are difficult

Protein design

Not talking about

- design to change enzyme specificity
 - anything to change ligand binding

Am talking about

- you have a useful protein probably enzyme
 - want a more stable version
 - stability ?
 - pH
 - solvents
 - temperature \longleftarrow
- assumption
 - If I write a sequence, you can synthesise it

Experiment

Trial and error

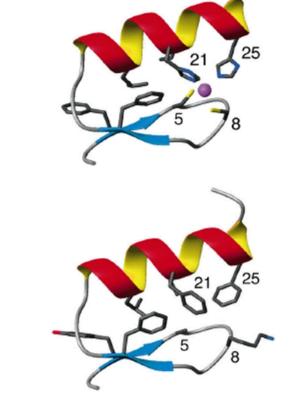
• propose changes to sequence, try it out – not much fun

For binding

- phage display, *in vitro* evolution
- Computational methods...

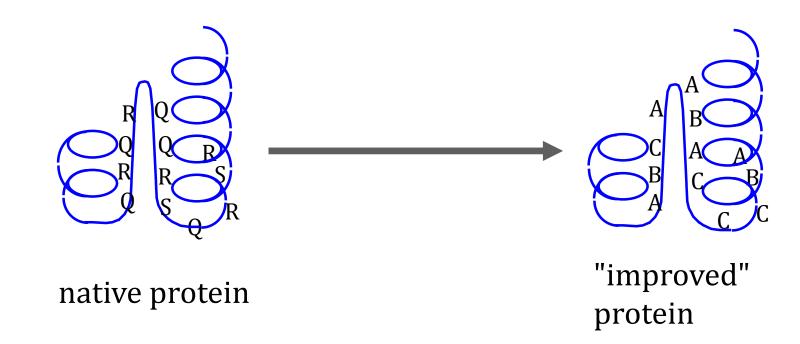
History

1997


designed **QQYTAKIKGRTFRNEKELRDFIEKFKGR**

native **KPFQCRICMRNFSRSDHLTTHIRTHTGE**

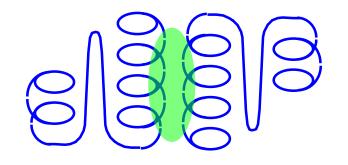
Zn-binding protein


- redesign sequence
- about 20% similar to start
- synthesised
- structure solved by NMR

These methods are not routine

Specify the problem

Make a useful structure more stable


Rules

- structure should not change
- some sites are fixed (active site, other binding)

Fixing / specifying residues

Examples

- lysine (K) often used for binding
 - change a residue to K and protein does not fold
 - mission:
 - adapt the rest of the residues to be stable
- change all residues, but not those in active site
- change some residues at surface to be soluble
- change some residues at surface to stop dimers

active site do not break

16/12/2019

[6]

Scores versus search

score / energy

- a function f ({s}, {r}) for sequence {s}, coordinates {r}
- if I change a residue in *s*
 - does my structure become more stable ?

search method

- many possible sequences
- how to decide which residues / sequences to try out

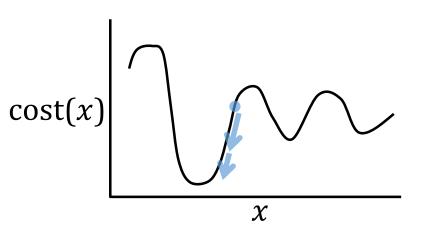
Searching

Imagine we have score function $f({s}, {\mathbf{r}})$

Systematic search for n_{res} we have $20 \times 20 \times \dots = 20^{n_{res}}$

Friendly search space ? (can I just optimise each site ?)

• change here affects there affects ...

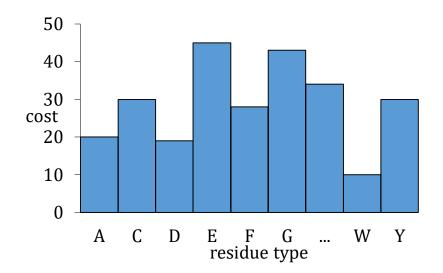

Consequence

• if I change this one, I have to change that one, then next, ...

Optimisation Problem

Easier problems

- gradient information
- can recognise minima

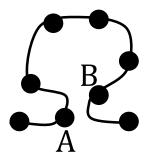


- we have directions
 - if a move in one direction is good, try to keep going

Contrast with sequences / discrete problems

Discrete problems

- no gradients
- no directions labels are arbitrary (ACDE or ECAD)
- lots of local minima
 - diagram is for just 1 of n_{res} sites



a bad method

- some starting sequence $\{s\}$ from s_1 to $s_{n_{res}}$
- score $E_0 = f(\{s\}, \{r\})$
- pick a position *i*
- change *s_i* to some different residue type (trial)
- score $E_{trial} = f(\{s_{trial}\}, \{\mathbf{r}\})$
- if $E_{trial} < E_0$ then accept s_{trial} say $\{s\} \coloneqq \{s_{trial}\}$

Will it work?

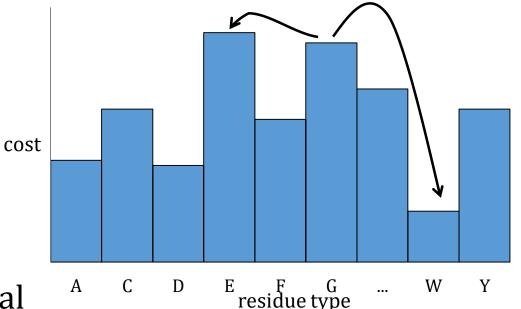
- simplest example of correlations
- any change to A must change B

Taking bad moves

I cannot simply look for good moves – alternatives ?

- change two residues at a time ? (400 possibilities)
- three residues at a time (8000 choices)
 - will not generalise

Different philosophy


• change one residue at a time, but allow the system to sometimes get worse

Monte Carlo - accepting bad moves

- decide on a move
 (change some s_i)
- if system is better
 - keep trial move
- if system is worse
 - slightly worse
 - probably keep trial
 - much worse
 - throw away

Name of procedure: Monte Carlo

• what else do we need ?

Annealing

At the start, we are far from optimum

• take big moves, accept bad energies more often

Later, we are closer to a good sequence

- do not accept so many bad moves
- try to optimise details, locally

Name for this idea – annealing

• formalise this ? secret overhead

Monte Carlo properties

Deterministic ?

- you and I write programs without bugs
 - get different answers

Do we get to optimum ?

almost never

Difficult?

• very easy to program

Fundamental problem – search space is too big

reducing the search space - types of residue

look at green areas

- should be charged or polar
- not 20^n maybe about 11^n

Can do the same for buried residues (A, I, L, M, F, V)

• gives 6^n

reduce search space - remove dead ends

Consider one position with 20 possibilities

- I can have a residue of type *a*
 - what is the best score you could possibly have for a given his neighbours ? a_{best}
 - what is the worse score you could have ? *a_{worst}*

At this site loop over the 20 amino acids

- for the 20 possibilities *a*
 - for 19 alternatives *b*
 - if $b_{worst} < a_{best}$
 - *a* cannot be possible at this position

Name: pruning / dead end elimination / wegschneiden

Pruning

- sometimes finds only one amino acid type is possible at a position
- usually makes search space much smaller

side-chain conformations / rotamers

Side chain conformations ? same problem as modelling

- need score of side-chain, but you do not have coordinates
- use coordinates from rotamer library
 - maybe simplified to one angle χ_1

Original problem - choose from 20 amino acid types

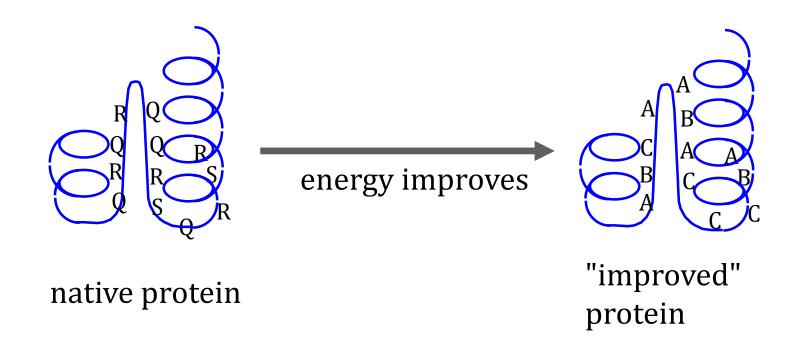
• now $\approx 20 \times 3$ types

Fits naturally into

- Monte Carlo try a new amino acid rotamer
- Pruning method which amino acid+rotamer can be excluded ?

score functions / energies

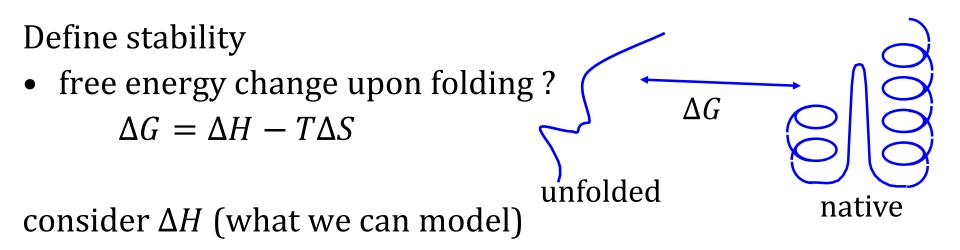
How sophisticated ?


- backbone is fixed
- using rotamers
 - no need to worry about bonds, angles, torsion angles

Mainly

- van der Waals
- electrostatics

Score functions / Energies

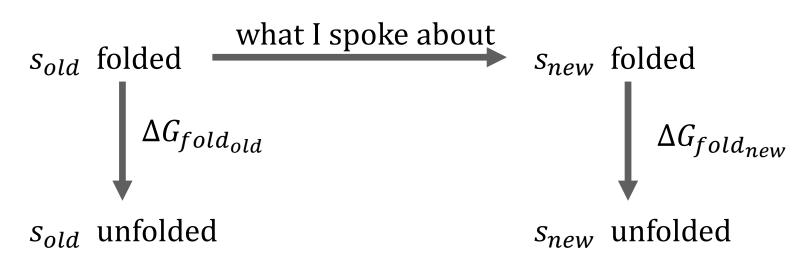

Is energy enough ? Is this relevant ?

Question here is stability

• two problems

energy differences




Have I considered *H*_{unfolded} ?

Am I looking at the correct energy change ?

Change an amino acid and native has better energy

- what if unfolded also has better energy?
 - think of a surface residue

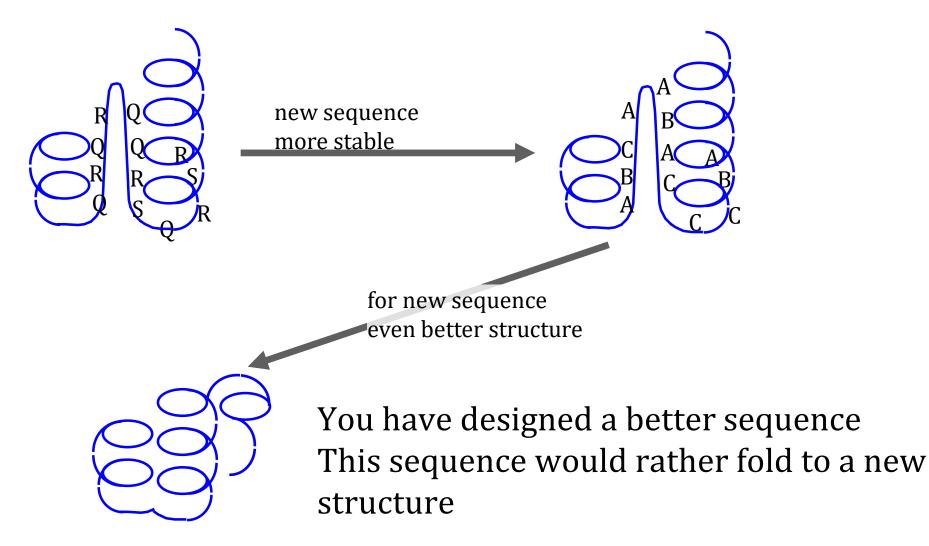
What really matters

$$\Delta G_{fold_{old}} - \Delta G_{fold_{new}}$$

It is not enough just to look at structures

• should also look at non-structures / unfolded

16/12/2019 [25]


What have I neglected ?

Free energy change has entropy $\Delta G = \Delta H - T \Delta S$

- my energy models do not have ΔS
- is this important ?
- the unfolded states are very disordered

Negative design

Another complication – alternative folds

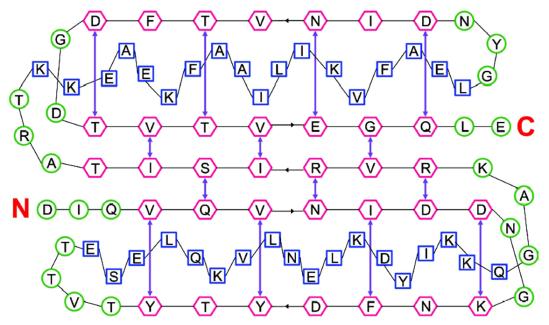
Negative design – cure ?

Typical approach

- at each optimisation step
 - check alternative folds may not be easy
- tricks in scoring function

How well do methods work?

Success stories


- example at start of lecture
- many more individual stories

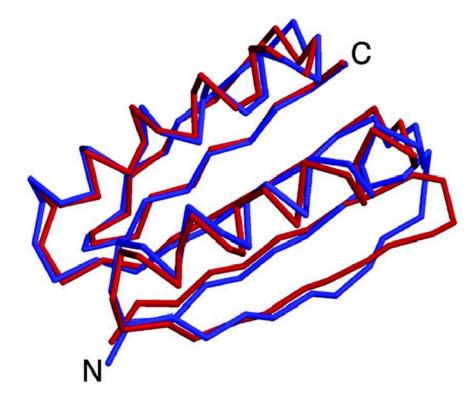
Not at all routine

• many failed attempts not spoken of

Spectacular Success

- "topology" order of secondary structure units
- write down a topology that does not exist in nature

Methods


- pure Monte Carlo Result
- apparently new sequence

Structure

- as predicted
- solved by X-ray
- phasing story

Problem solved

• unclear (how many failures ?)

Optimism

You do not have to find the optimal sequence

- think of man, monkey, horse haemoglobin
- lots of room for changes in sequence

Pessimism

Designed sequences must

- fold
- be expressed and produced

for Klausur

- why optimise sequences ?
- search space size, reducing
- optimisation properties continuous, discrete, Monte Carlo
- rotamers
- score function energies, ΔG
- negative design