Nucleotides

Mostly RNA

- complement RNA course
- more DNA in sequence context
- RNA does more biochemistry
 - RNAzymes, regulators
- Assumed
- you remember
 - ACGT in DNA
 - ACGU in RNA
- always write from 5' to 3'

Roles of molecules

	RNA	DNA	proteins
genetic information	Χ	X	
structure	usually single stranded	duplex	lots
regulation/interactions	Χ	Х	Х
ligand binding / catalysis	Χ		Х

If RNA does all this interesting chemistry

• it has interesting structure

How do proteins work?

Some site decorated with special groups

+ / -, neutral, polar / non-polar, big / small

Chemical choice ?

- 20 kinds of amino acid
- half a dozen really different types

Do you see this with nucleotides ?

RNA binding ligands ?

Examples

- riboswitches / regulators
- catalysts

Two consequences

- 1. RNA must fold to certain shape
- 2. Exposed chemical groups give specificity / strength

Do not see this much with DNA

Structures / type of molecule

Protein

- specific structure depends on sequence
- sometimes floppy not structured

DNA

• double helix

RNA

- do they fold to nice, well-defined shape ?
 - all RNA ?
 - all biologically-interesting RNA ?
 - some ?

Views of structure

Proteins

usually 3D – rarely secondary structure

RNA

• usually 2D – less 3D information

A B SKPOPIAAANWKCNGSQQSLSELIDLENSTSINHDVQCVVASTFVHLAMTKERLSHPKF 10 20 30 40 50 60 A C D C A VIAAQNAIAKSGAFTGEVSLPILKDFGVNWIVLGHSERRAYYGETNEIVADKVAAAVASG 70 80 90 100 120 120 120 FMVIACIGETLQERESGRTAVVVLTQIAAIAKKLKKADWAKVVIAYEPVWAIGTGKVATP 130 140 150 160 170 180 QAQEAHALIRSWVSSKIGADVRGELRILYGGSVNGKNARTLYQQRDVNGFLVGGASLKP 190 200 210 220 220 230 240

3tim

RNA – how much information ?

Proteins

• 1.4×10^5 or about 3×10^4 interesting ones

RNA

- 4.2×10³ structures with some RNA
- 1443 with pure RNA many small and boring
- 485 pure RNA \geq 40 bases (really less lots of redundancy)

Why so few RNA structures?

- RNA hard to handle (RNases)
- crystallography
- NMR
 - assignments very difficult (only 4 kinds of base)

Features of RNA

What dominates literature?

• base pairing

Need more interactions to explain all these shapes

tetraplex 1mdg

Important for RNA structures

Energies ?

- As in previous lectures
- bonds, bond angles, torsion angles
- non-bonded (electrostatics, van der Waals)

Details coming ..

- H-bonds
- charges
- stacking

Is my description consistent?

• H-bonds/charges/stacking vs electrostatics/van der Waals

non-bonded terms / convenience

Physics not changed

convenient to talk in terms of H-bonds, charges and stacking

interaction	physics	relevance
H-bonds	van der Waals electrostatics	base-pairing + bit more
charges	electrostatics	backbone
stacking	van der Waals	bases

Base-pairing / H-bonds

H-bonds wobble pairs

GU

strength very comparable to AU

Compare with DNA

• mismatches – very rare

More generally

- count the H-bond donors and acceptors
- many H-bond possibilities
 - not limited to bases

negative charges

16/12/2019 [13]

Charges

5' end

negative charges

Charges

Contrast with proteins

• mostly neutral, some charged residues

RNA and DNA

- full negative charge every base (at backbone)
 Consequences
- strong interaction with
 - solvent
 - +ve ions
- shape of backbone
 - move PO₄⁻ away from each other

Stacking

Bases are large aromatic systems

Very strong preference to form stacks

Representation / storing 3D structures

Proteins – conventions and simplifications

- diagrams ribbon plots
- break into secondary structure and loops
- represent as a set of C^{α} atoms
- Ramachandran / ϕ , ψ plots

RNA - similar ideas ?

RNA – no Ramachandran plot

Use less than 6 angles

We do not need 6 independent descriptors (angles)

- want to simplify
 - for communication
 - calculations / storage

Easy – but no agreed scheme

• a proposal

Torsion angles

Use atoms that are not bonded to each other Basic idea

- pick 4 atoms that are not sequential
- define a simplified backbone
 - $P-C_4-P-C_4-P-C_4-...$
- leads to "pseudo-torsion" angles

$$C4_{n-1}-P_n-C4_n-P_{n+1}$$

$$\theta$$

η

$$P_n - C4_n - P_{n+1} - C4_{n+2}$$

Base

Base

End of structure introductions

- Nucleotide history dominated by base-pairing
- single-stranded RNA folds into shapes like an enzyme / receptor
- Energies we use simplifications
- Must be more than just base-pairing
- Representations not as nice as for proteins

Remember everything for next topic

• predicting secondary structure

RNA structure, predictions

Themes

- 2D, 3D
- structure predictions
- energies
- kinetics

Structure – protein vs RNA

Middle of proteins

• hydrophobic core - soup of insoluble side chains

Middle of RNA

- base-pairing / H-bonds
- much more soluble
 - if something wants to forms H-bonds, there competition from water

Protein structure lectures are not helpful today

RNA – how important is 3D structure ?

Binding of ligands (riboswitches, ribozymes)

 totally dependent on 3D shape where functional groups are in space

What do we do?

• mostly ignore it

How realistic is 2D? How relevant?

PDB acquisition code 1u9s

3D versus 2D

2D why of interest ?

- (a) computationally tractable (fügsam / machbar)
 (b) can be checked by experiment (SHAPE)
- historic belief that nucleotides are dominated by base pairs + helices (classic and wobble)

2D why of interest ?

- 3. Claim RNA folds hierarchically
- secondary structure forms from bases near in sequence
- these fold up to tertiary structure

2D why of interest ?

3. Claim - RNA folds hierarchically Contrary evidence in protein world

- isolated α -helices and β -strands are not stable in solution

Plausible in RNA world?

• RNA double strand helices are believed to be stable

Useful ? if true

• 2D (H-bond pattern) prediction is the first step to full structure prediction

Four representations of flat RNA

+ on next slide

- write down bases on circle
- arcs (lines) may not cross

Four representations of flat RNA

1. conventional representation

Same features on both plots

2. Nussinov's circle

Parentheses

- 3. parentheses most concise
 - ...((((((....))))))....(((((....)))))
- can be directly translated to picture
- easily parsed by machine (not people)

Dot plots

4. Dot plotsSame features in both plots

- look for long helix 57-97, bulges in long helix
- probabilities (upper right) remember for later

made with mfold server

20 60 80 -100 120

80

100

120

140

nomenclature / features

single strand

A-form double helix

Double helix with 5'-dangling end

single nucleotide bulge

three nucleotide bulge

symmetric internal loop

hairpin loop

For explanations later

- hairpin loop
- bulge (unpaired bases)

or, symmetric internal loop of 2 nucleotides

asymmetric internal loop

Nussinov, R., Jacobson, A.B. Proc. Nati. Acad. Sci. USA, 77, 6309-6313(1980)

Burkard, M.E., Turner, D.H., Tinoco Jr., I., in The RNA World, 2nd Edn, eds Gesteland, RF, Atkins, JF Cold Spring Harbor Laboratory Press (1999) 16/12/2019

[33]

2D - properties and limitations

Declare crossing base pairs illegal

- think of parentheses
- discussed later

What do energies depend on ? (for now)

- just the identity of the partners
- 2 or 3 types of interaction
 - GC, AU, GU

What is the best structure for a sequence?

Predicting secondary structure

How many structures are possible for *n* bases ? $cn^{3/2}d^n$

for some constants *c* and *d*

• exponential growth (d^n)

Problem can be solved

- restriction on allowed structures
- clever order of possibilities

Best 2D structure (secondary)

First scoring scheme :

• each base pair scores 1 (more complicated later)

Problem

• some set of base pairs exists – maximises score

Our approach

- what happens if we consider all hairpins ?
- what happens if we allow hairpins to split in two pieces ?

Philosophy

Structure is

- best set of hairpins (loops)
 - with bulges
 - loops within loops

Start by looking at scores one could have

• try extending each hairpin

hairpins / loops

Start by looking for best possible hairpin

If we know the structure of the inner loop

• we can work out the next

If we know the black parts

we can decide what to do with the red
 i and *j*

hairpins / loops

Important idea

- if I know the optimal inner loop try to extend it
- try to insert gaps see if score is improved

Next important point

• walk along sequence 1..*n* see if score is better with two loops

Guarantees optimal solution, but...

Pseudoknots

Have we considered .. ? No !

- Name pseudoknot
- Do we worry ?
- Stellingen no
- here ? Probably.

Pseudoknots

Pseudo-knot – not a knot

• why the name ?

Topologically like a knot

Would you expect them to occur?

picture from Zuker & Sankoff, Bull. Math. Biol. 4, 591-621 (1984), RNA secondary structures and their prediction

Pseudoknots

Given some unpaired bases, what would you expect?

- solvate ?
- form more H-bonds ?
- pack bases against each other ?

Cannot (practically) be predicted

• order of steps in base-pairing methods

pseudoknots

from Burkard, M.E., Turner, D.H., Tinoco Jr., I., in The RNA World, 2nd Edn, eds Gesteland, RF, Atkins, JF Cold Spring Harbor Laboratory Press (1998)

pseudoknots

Frequency of pseudoknots ?

- a few % of all H-bonds / base pairs
 Significant ?
- most structures will have some
- classic RNA example

pseudoknot summary

Fast algorithms cannot find pseudoknots

- in order to go fast, the algorithms work in a special order
- some base pairs come in "wrong" order
- most web servers, fast programs ignore the problem

A real limitation in the methods

How expensive are the methods?

cost of predicting structure..

The methods are not perfect. How expensive are they?

for each <i>i</i>	(growing loops)	
test each <i>j</i>		
try each <i>k</i>	(splitting loops)	

gives $n \times n \times n = O(n^3)$

Scoring schemes – H bonds

First step – from base pairs to H-bonds

We know

- GC 3 H-bonds
- AU 2 H-bonds
- GU 2 H-bonds

Compare a structure with

- 3 × GC versus 4 × AU
- 9 H-bonds versus 8 H-bonds

Scoring schemes – unpaired bases

Second improvement

Consider unpaired bases

- counted for zero before
- compare loop of 3 / 5 / ..

Do these bases

- interact with each other ? solvent ?
- energy is definitely $\neq 0$

Scoring schemes - stacking

Third improvement

Bad assumption: each basepair is independent

• S(i,j) = base-pair + S(i+1, j-1)

Consider all the interacting planes

• partial charges, van der Waals surfaces

Scoring schemes - stacking

Goal

- incorporate most important effects
- do not add too many parameters ... nearest neighbour model

Nearest neighbour model

Terminal loop costs 5.4 kcal mol⁻¹

scoring summary

Approximation to free energies - $\Delta G_{folding}$

<i>n</i> base pairs	very primitive
<i>n</i> H-bonds	
loop sizes	
base-stacking	nearest neighbour model
tertiary interactions	ignored

Reliability

How accurate ?

• maybe 5 – 10 % errors in energies

How good are predictions?

• maybe 50 – 75 % of predicted base pairs are correct

Why so bad ?

Reliability – alternative structures

Think of an "A"

- wants to pair with a U
- there are many many U's

Think of any base

many possible good partners

Consider whole sequence

 there may be many structures which are almost as good (slightly sub-optimal)

Treat in terms of probabilities

Probabilities

- lower left best structure
- upper right probabilities of base-pairs

Reliability - Tertiary interactions

miscellaneous H-bonds non-specific van der Waals Most larger RNA's have many tertiary interactions relatively compact tertiary interactions from crystal

2/2019

[56]

2D vs 3D

2g9c purine riboswitch

tertiary interactions from crystal

2D vs 3D

Reliability - summary

- 1. alternative structures with similar energies
- if the second best guess is the correct one
 - you will not see it
- 2. tertiary interactions are not accounted for

State-of-the-art predictors

Related sequences from other species fold the same way

Procedure

- collect closely related RNA sequences from data bank
- try to fold all simultaneously

Why is this good ?

- imagine our mistakes are random
- repeating the calculation averages over random errors

Imagine you could predict the best secondary structure perfectly. Is the problem solved ? ...

Kinetics

Imagine you can predict 2D structures

• are you happy ?

Two possible scenarios

- kinetic trapping
- slow formation

Kinetic trapping

Term from protein world

Wherever the molecule is

- it will probably go to energetic minimum
- less friendly landscape

How real is the problem ?

Consider base of type G

- there are many C's he could pair with
- only one is correct

There are many local minima on the energy landscape

Landscapes / kinetics

Can one predict these problems ?

- not with methods so far
- Try with simulation methods
- Monte Carlo / time-based methods
- start with unfolded molecule
- use classic methods to get a set of low energy predictions
- simulate folding steps
 - measure amount of each good conformation with time..

Example calculation

- conformation 1 forms rapidly
- conformation 2 slowly forms
 - conformation 1 disappears

Implications

What if RNA is degraded?

Molecule disappears before it finds best conformation

"kinetically preferred" conformations may be more relevant than best energy

summary

Tertiary structure very important (binding of ligands)

2D (secondary structure calculations)

- fast
- limits structures one can predict (no pseudoknots)
- predictions are not reliable
- used everywhere in literature (coming seminars)

You may lose anyway (kinetics)