Protein Structure Prediction ¹/₄ century of disaster

- Claims
- Frauds
- Hopes
- Progress

Protein structure who cares ?

- $2\frac{1}{2}$ to 3 decades
- many kilograms of literature
- many prizes awarded (last year Max-Planck)
- listed as a "grand challenge" problem
- IBM's big blue
- competitions / comparisons (like chess / Go)

What is prediction ?

- protein sequence -> coordinates like x-ray
- similarity to known structure ?
 - boring

Justification for prediction

Absolute basis for

• drug design

Useful

- understanding enzymes
- rational protein engineering
- industrial use (sensors, catalysts)

Justification for this talk 1970's

- 1975 Levitt M Computer simulation of protein folding 50 residues, "such an approach .. understanding and simulation of ... biological assembly processes"
- 1978 Sternberg MJ, Thornton JM.
 "In principle, it is possible to predict theoretically the threedimensional structure of a protein from its amino acid sequence"

Recent

- 1998 Duan and Kollman 36 residues, 1000 ns
 256 processors, 2 months do not find native structure
- 1999 Chipot...
 11 residues 100's ns
 do not find expected structure

• 2003 Klepeis and Floudas

"ASTRO-FOLD, a novel and complete approach for the ab initio prediction of protein structures given only the amino acid sequences of the proteins"

Duan Y, Kollman PA, Science 282, 740-744 (1998) Chipot ... Pohorille, Proteins 36, 383-399 (1999) Klepeis & Floudas, Biophys. J. 85, 2119-2146 (2003)

Long history

- 1969 Scheraga, Calculation of polypeptide conformation. Harvey Lect. 63:99-138
- 1970 Gibson and Scheraga, Minimization of polypeptide energy. IX. A procedure for seeking the global minimum of functions with many minima., Comput Biomed Res. 1970, 375-384
- 1974 Chou and Fasman, Prediction of protein conformation, Biochemistry;13:222-245
- 1975 Levitt and Warshal, Computer simulation of protein folding, Nature 253, 694
- 1977 McCammon.. Karplus, Dynamics of folded proteins, Nature, 267, 585

Patents

- 1985, Levinthal and Fine, "... energy and pairwise central forces of particle interactions" includes "a means for calculating energy and force values for each *ij* pair... force on each particle"
- 1993, Skolnick and Kolinksi, "A computer system and method are disclosed for determining a protein's tertiary structure from a primary sequence of amino acid residues"
- 1995, Eisenberg, "Method to identify protein sequences that fold into a known three-dimensional structure"
- 1997, Rose and Srinivasan "A computer-assisted method for predicting the three-dimensional structure of a protein fragment from its amino acid sequence"

Books

- "Prediction of Protein Structure ..." Fasman 1989
- "Protein Folding Problem & Tertiary Structure Prediction", Merz and le Grand, 1994
- "Protein structure prediction: A practical approach" Sternberg, 1996
- "Protein structure prediction: Methods...", Webster 2000
- "Protein Folding Problem & Tertiary Structure Prediction", Friesner, 2001
- "Protein structure prediction: A bioinformatic ..." Tsigelny, 2002

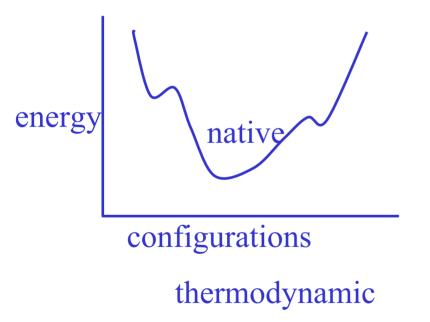
Long History

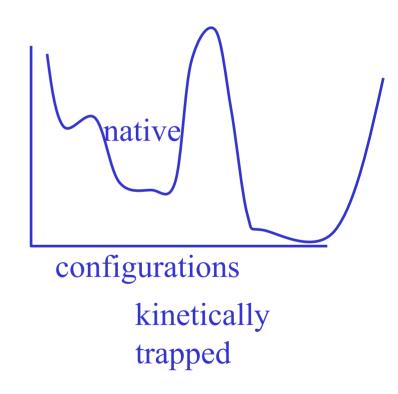
- 1969 Scheraga, Calculation of polypeptide conformation. Harvey Lect. 63:99-138
- •
- 1999, Liwo, ... Scheraga, Protein structure prediction by global optimization..., PNAS, 96, 5482-5485
- 2001, Proteins editorial simulations are not enough for publication

Grounds for optimism

Anfinsen

- take a protein
- denature
- remove denaturing
- it refolds


Two consequences


- the information for the structure is in the sequence
- protein finds its free energy minimum

Anfinsen or bust

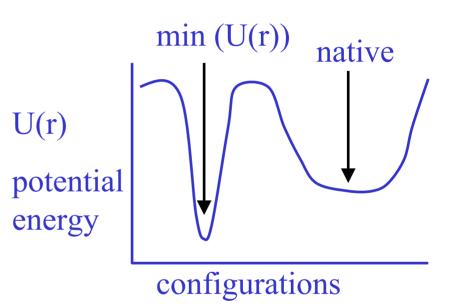
How true ?

- dogma
- does not work for all proteins
- some are kinetically trapped

• consequences...

Is energy enough ?

We have a perfect model for potential energy


• do we want the minimum ?

Can we find the native ?

- requires
 - molecular dynamics, MC other simulation method

Are problems real?

- β -fibril proteins
- poorly defined structures
- the world will turn into ⁵⁶Fe

What we want

Potential energy function

• the most visited structures

Free energy function

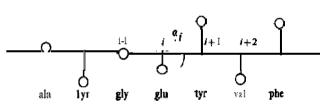
- the best scoring structure
- free energy is not a function of a structure

Truth !

- perfect model for physics + infinite time
 - no problem

Reality

• any method which predicts x-ray structures


Simple models

Model physics

- what level ?
 - QM ?
 - atomistic ? (later)
 - simplified physical
- atomistic ?
 - too many degrees of freedom
 - search problem too big
 - too many local minima

simplified models 1975

- "under certain conditions, the method succeeds in 'renaturing' BPTI" $\overrightarrow{}$
- model
 - sidechain-sidechain Lennard-Jones like
 - number neighbour estimate solvation
 - near neighbour special treatment
 - backbone H-bonds
- calculations
 - BPTI
- calculated structures "have features in common with x-ray"
- "an exciting application .. prediction of the conformation of an unknown protein"

simple models post 1975

2001 (Sessions et al)

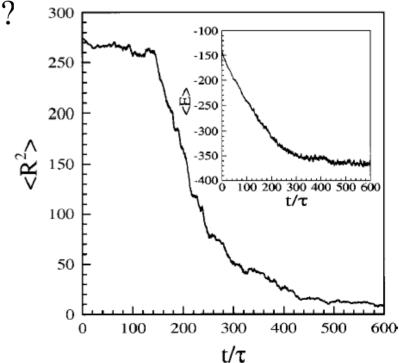
- one pt / sidechain + one for backbone
- simple interaction forms
- fixed backbone geometry
- 2001 (Hassinen and Peräkylä)
- one pt / sidechain
- backbone dipoles
- accurate backbone geometry
- lots of dynamics terms (flexible bonds, angles, ...)

Some elegant fitting methods (Gerber mid 90's) Any better ?

Gibbs... Sessions, Proteins, 43, 186-202 (2001), Ab initio protein structure prediction ...simplified off-lattice model Hassinen & Peräkylä, J. Comput Chem (2001), New energy terms for reduced protein models...

2001 physical model results

	1975	2001
proteins for parameterising	1	100's
proteins for testing	1	few or 100's
reproduce native structures	a bit	some to 4 Å / some not
dynamics	EM + randomisation	MD, MC n
Progress		
• better testing (a bit)		
 much more computer time 		
 local structure good 		
 better parameterisation / residue specific effects 		
Quastiana		

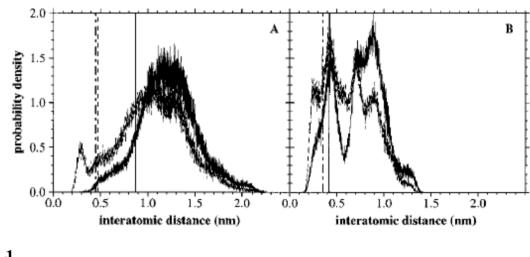

Questions...

Questions from physical models

- If we do better most important:
- do we know which terms helped ?

Can we represent some of the physics ?

- folding kinetics
- heat capacity
- collapse ?
- what system ?
 - dumb homopolymer


Atomistic MD

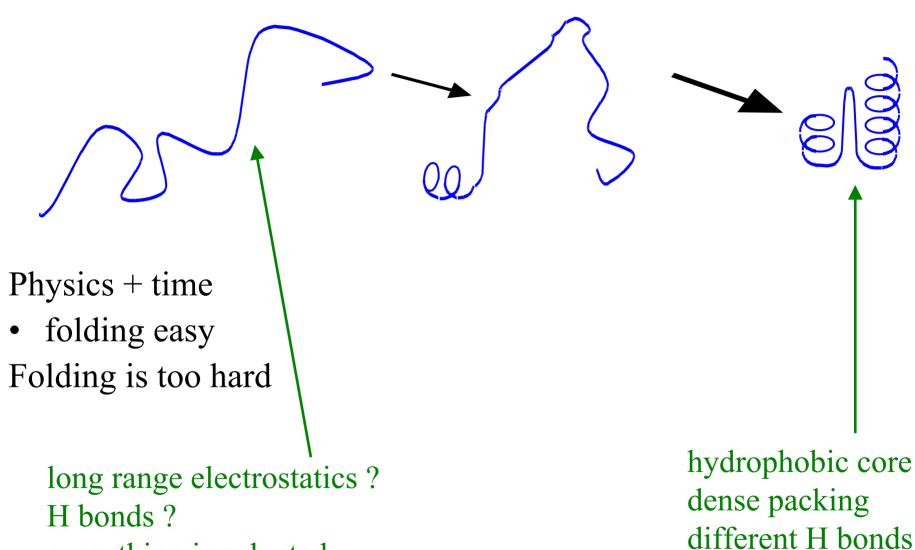
- 1977 50 residues < 10 ps (10⁻¹²) in vacuo
- 1980's 100 residues many 10's ps often in water
- 1998 Duan and Kollman, water 36 residues, 1000 ns
 256 processors, 2 months do not find native structure
- 2001 Daura et al, water
 6 residues, several x 100ns
- 2003 Folding at home some lower bounds on some folding events

Duan Y, Kollman PA, Science 282, 740-744 (1998) Daura, ... Seebach, van Gunsteren, J. Am Chem. Soc, 123, 2393-2404 (2001)

atomistic MD progress

- small protein
 - possible intermediate (wrong answer)
- 6 residue peptide

good

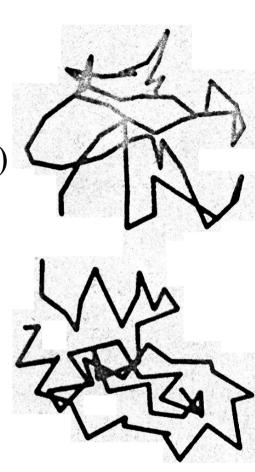

bad

complete folding / unfolding agrees with experimental data 6 residues one peptide testing ? clustering of structures (later)

Forgetting physics

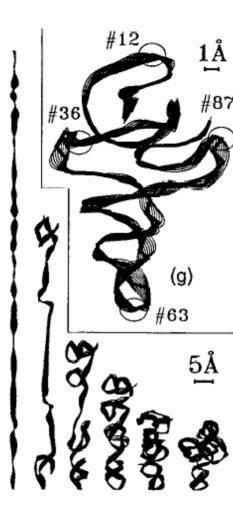
- Kuntz ... Kimelman 1976
 - "we will not attempt to determine the correct forces"
 - "nor are we concerned with simulation of the protein folding process"
- why is this useful ?

Modelling folding



everything is solvated

13/12/2003 [22


Forgetting physics 1976

- one point / residue
- chain connectivity
- hydrophobic partitioning (from centre of mass)
- simple interaction matrix
- limitations
 - no parameterisation data
- Today ?

non-physical today

- lots of parameterisation data
- complete, automatic adjustment of parameters
 - discrimination function approach
- scary result
 - allow all possible pairwise interactions
 - for some cases, proteins cannot be folded

A hierarchical approach ?

Fix local structure and assemble big pieces

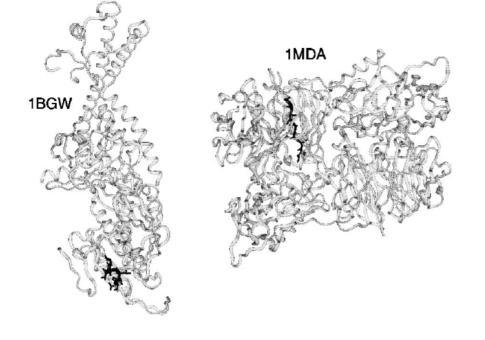
- reason for the field of secondary structure prediction
 History
- 1974 Chou and Fasman, ... GOR
 - single residue methods
 - 60 % or less
- 1990's
 - 66 % ? (machine learning)
- today

(sequence profiles)

(every combination possible, nets of nets)

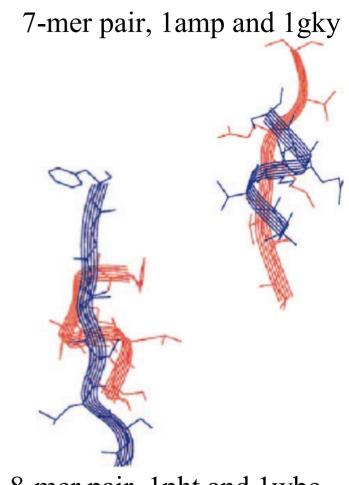
• is this enough ?

• 76 %


³/₄ secondary structure

Is this enough?

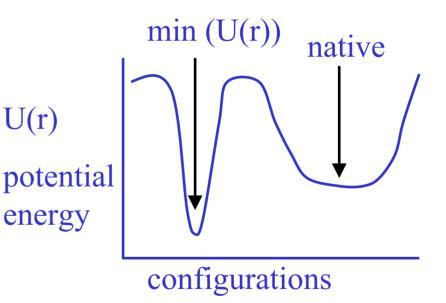
• a pure building block approach will fail


Fundamental problem

• secondary structure is not a local property

Can one use this information ?

- combine with others
- are dihedrals always in their best position ?



• 8-mer pair, 1pht and 1wbc

Mezei, M, Prot. Eng, 11, 411-414 (1998) Chameleon sequences in the PDB from Sudarsanam, S, Proteins 30, 228-231 (1998), "... identical octapeptides can have different conformations"

Maybe force field approach is wrong

- Potential energy is too difficult
 - requires sampling
- Approximate free energies
- Potentials of mean force

Potential of mean force

bad estimate the happiness of a lacksquaregood minimum from a single point U(r) potential when is it good? energy • simple systems configurations when is it bad? F(r) **1n** vacuo in water apply to proteins distance Na⁺ Na⁺

Protein potentials of mean force

- 1990 Sippl, 1992 Jones et al
- 1985 Miyazawa & Jernigan
- 1978 Warme and Morgan
- 1976 Tanaka and Scheraga
- 1971 Pohl

Pohl, Nature, 234, 277 (1971) Warme and Morgan, J. Mol. Biol 118, 273-287 Tanaka and Scheraga, Macromolecules, 9, 142-159 (1976) Miyazawa & Jernigan, Macromolecules, 18, 534 (1985) Sippl, J. Mol. Biol. 213, 819 (1990)

Innovations in potentials of mean force

Progress ?

- parameterisation
 - early residue residue contacts
 - distance dependent
 - atomic detail
 - parameterisation in terms of angles, ...

Data

- 1978 not much
- 2003 more
- Subject of hate ...

Maybe it is really a searching problem...

Ben-Naim, J. Chem. Phys. 107, 3698, "Statistical potentials... are these meaningful ?" (1997) Thomas and Dill, J. Mol. Biol., 257 (1996) "Statistical... How accurate are they ?" (1996)

Do not mention genetic algorithms

A mass graveyard

- 1970 Gibson and Scheraga, Minimization of polypeptide energy.IX. A procedure for seeking the global minimum of functions with many minima.
- molecular dynamics
 - SD, Langevin,
 - high dimensional
- potential energy contouring
- simulated annealing
- biased MC
- replica exchange
- self consistent mean field

- genetic algorithms
- branch and bound
- pole dropping
- minimum tunnelling
- chain growth
- function modification
 - deformation, diffusion eqn

State of the art ?

- 1975 looked promising
- 1988 just a bit more cpu time
- 1995 Rose, Srinivasan LINUS
- 2003 Klepeis and Floudas
 "ASTRO-FOLD, a novel and complete approach for the ab initio prediction of protein structures given only the amino acid sequences of the proteins"
- what was said in 1995?

20 NOVEMBER 6, 1995 C&EN

Researchers Advance Ability To Predict Structures Of Folded Proteins

John Hopkins Journal

- "It used to take a world-class lab five years to solve a protein" "LINUS promises much quicker and cheaper structures, soon to be done in a day or an hour"
- "Over the very long term, the implications of LINUS are too big to see, because a discovery of this dimension changes the way one sees the world"

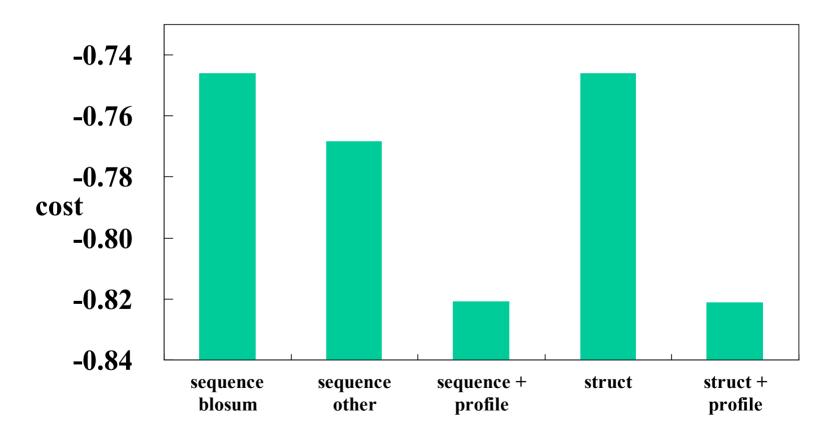
Trends and overview

Sack the atomistic simulators ?

atomistic MD

- physics has not changed
 - some methods can be implemented (PB/solvent/..)
- proteins are more stable (good ?)
- extrapolation gives good simulation of 50 residues in 2046
- current results do suggest feasibility
- one needs big blue ?
 - not a useful method
- optimistic school of thought
 - interesting conformational space is
 - very limited
 - can be found
- fundamental question from longest simulations
 - searching or score functions

Databases


- sequences and structures
- much less noise than 25 years ago
- still not enough for some areas

Fold recognition (sequence)

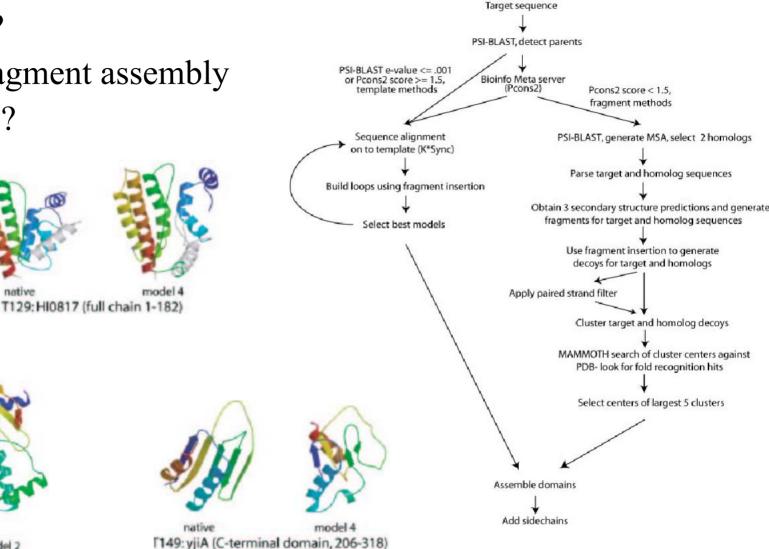
- biggest tangible usable advance
- textbooks
 - twilight zone of homology 20 25 %
- use of sequence profiles (psi-blast, HMMs)
 - routinely << 20 % reliable homologues
- example calculation

Sequence profiles

- 1500 x 2 alignments
 - quality of alignments

Fold recognition

- belief
 - there is a finite number of protein folds
 - all we have to do is find the best for our sequence
- limitations
 - breaks on unknown folds


state of the art

Best results ?

Baker's fragment assembly

native

automatic?

Bradley, ... Baker, Proteins, 53, 457-468 (2003)

T161: HI1480 (full chain, 1-156)

native

model 2

Give up

Progress

- MD / bigger computers
- fold recognition
- occasional new structures
- parameterisation data
 - reliability and more complicated models

Signal to noise problem

- when are we happy ?
- noble goal
 - make calculators redundant