RNA base pairing
self consistent mean field approach

Andrew Torda, Hamburg

How to recognize a brave protein calculator?
• rescue drowning babies?
• take a job with a Liechtenstein Treuhander?
• administrator in the Kenyan electoral commission?
• director of WestLB bank?
RNA base pairing
self consistent mean field approach

Andrew Torda, Hamburg

How to recognize a brave protein calculator?
• rescue drowning babies?
• take a job with a Liechtenstein Treuhänder?
• administrator in the Kenyan electoral commission?
• director of WestLB bank?
• give a talk on RNA to RNA people
 • a method for finding basepairs
 • pseudoknots? give me more.
RNA base pairing
self consistent mean field approach

- work of Jens Kleesiek
- RNA secondary structure / base pairing
 - maybe first step to 3D structures
 - much easier to calculate
- energy functions
 - yes / no
 - horrible decomposition
 - interpret in terms of bases
 - calculated by pairs of pairs
- discrete view of world
- using them..
Two Views Of Problem

Impose some restrictions
• ordering / crossing of pairs
• dynamic programming problem

Problem ?
• pseudoknots
• alternative view ..

easy

nasty
Two Views Of Problem

Impose some restrictions
- ordering / crossing of pairs
- dynamic programming problem

Alternative
- i can pair with some j
- restricts other possibilities
 - nobody else can pair with j
- very limited set of states
- goal
 - best energies
 - consistent set of pairs
SCMF

- limited set of consistent states?
 - just like wave functions or side chains
- what is the probability of being in a state?

\[
p_i = \frac{e^{-\frac{E_i}{kT}}}{\sum_j e^{-\frac{E_j}{kT}}}
\]

- high temperature
 - all states possible
 - system is in many states at once
- low temperature
 - lowest energy states more likely
 - very few states possible
Consistency

• being in one state means you are not in another
• probabilities propagate through system – takes time
• mean field ?

• Scheme
 start warm
 while (not converged)
 calculate energies of all states
 recalculate probabilities
 cool
Convergence

- convenient measure
 \[S = \sum_{j=1}^{N_{\text{seq}}} \sum_{i \in \text{states}} p_{i,j} \ln p_{i,j} \]
Does this work?

• not impressed?
• more on energies
Energies and biases

- Basic energies
 - Matthews / Turner scheme
- what will happen naïvely?

- biases
 - base i has some choices
 - consistent with partner
 - bias
 - neighbour has p associated with a some pair
 - you would like to pair so as to form a helix
- final recipe
Energies and biases

- Literature energies (almost)
- helix bias
- loop bias
- $i \rightarrow j = j \rightarrow i$
- sink
 - energy from not forming a pair
- running time $O(mn^2)$
- more parameters
 - cooling scheme
 - memory / damping
Easy cases

- red = bad
- do not forget extra pairs
Nasty

- extra base pairs
- our energy?
- more fair – do not use mfold
• extra base pairs
• our energy ?
• pknotsRG can be totally wrong
• pknotsRG misses some helical regions
• we find too many
• and the same
- exactly as before
- many more
- what are we doing wrong?
Too many base pairs

- are we the first to see this?

- maximal graph matching approach

- given the problem
 - this is a good solution
 - Fixed?

Too many base pairs

• are we the first to see this?

• elegant?

Too many base pairs

- PUKE
- AUSKOTZEN
- BARF
- SICH ÜBERGEBEN

“gag me with a spoon”
-Moon Unit Zappa

Broken

- Why so ugly?
 - generate wrong pairs and clean up
 - If pairs are known to be wrong
 - they should be detected as less likely
 - changes probability trajectory of system
- How broken / ugly are we?
 - not too ugly
 - bit broken
 - helix, loop and sink terms are built in from start
- Fundamental problem
Problems

• Fundamental
 • we have excellent energies
 • energy model pushed too hard
• Global optima? maybe not quite
• Parameters can be tuned for any system
 • can it be done rationally / justifiably?
• Some details to play with
 • cooling
 • size dependence
• Some arbitrary terms to come
 • not easy
• Where is truth and beauty? pseudobase?

• Till next time